Skip to main content

Crystalline and Composite Scintillators for Fast and Thermal Neutron Detection

  • Conference paper
  • First Online:
Engineering of Scintillation Materials and Radiation Technologies (ISMART 2016)

Abstract

The control of the radioecological situation around nuclear power plants requires the detection of very low neutron fluxes. It makes necessary to use the large area detection systems. The same task is topical for radiobiology, radiomedicine, geological logging, and space applications. We proposed the technology to obtain the new class of scintillation materials, namely organic composite scintillators. It allows us to create the scintillation detectors of an unlimited area. We consider the hydrogen-bearing composite scintillators as a typical example of the detectors for fast neutrons and the composite scintillators based on grains of the Gd-bearing materials as the thermal neutron detectors. We discuss the combined detectors for selective detection of thermal and fast neutrons in the presence of background gamma radiation as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ann ICRP, The 2007 recommendations of the international commission on radiological protection. Publ. 103. Ann ICRP 37(2–4),1–332 (2007)

    Google Scholar 

  2. F.D. Brooks, R.W. Pringle, B.L. Funt, Pulse shape discrimination in a plastic scintillator. IRE Trans. Nucl. Sci. 7(2–3), 35–38 (1960)

    Article  Google Scholar 

  3. J.B. Birks, The Theory and Practice of Scintillation Counting (Pergamon Press, London, 1967)

    Google Scholar 

  4. M. Moszynski, G.J. Costa, G. Guillaume et al., Study of n-γ discrimination with NE213 and BC501A liquid scintillators of different size. Nucl. Instrum. Meth. A 350(1–2), 226–234 (1994)

    Article  ADS  Google Scholar 

  5. Z.W. Bell, G.M. Brown, C.H. Ho, F.V. Sloop, Organic scintillators for neutron detection. Proc. SPIE 4784, 150–163 (2003)

    Article  ADS  Google Scholar 

  6. S.A. Pozzi, J.A. Mullens, J.T. Mihalczo, Analysis of neutron and photon detection position for the calibration of plastic (BC-420) and liquid (BC-501) scintillators. Nucl. Instrum. Meth. A 524(1–3), 92–101 (2004)

    Article  ADS  Google Scholar 

  7. L. Swiderski, M. Moszynski, D. Wolski et al., Boron-10 loaded BC523A liquid scintillator for neutron detection in the border monitoring. IEEE Trans. Nucl. Sci. 55(6), 3710–3716 (2008)

    Article  ADS  Google Scholar 

  8. G. Hull, N.P. Zaitseva, N.J. Cherepy, New organic crystals for pulse shape discrimination. IEEE Trans. Nucl. Sci. 56(3), 899–903 (2009)

    Article  ADS  Google Scholar 

  9. T. Szczęśniak, M. Moszyński, A. Syntfeld-Każuch et al., Light pulse shapes in liquid scintillators originating from gamma-rays and neutrons. IEEE Trans. Nucl. Sci. 57(6), 3846–3852 (2010)

    Google Scholar 

  10. N. Zaitseva, B.L. Rupert, I. Pawelczak et al., Plastic scintillators with efficient neutron/gamma pulse shape discrimination. Nucl. Instrum. Meth. A 668, 88–93 (2012)

    Article  ADS  Google Scholar 

  11. S.A. Pozzi, M.M. Bourne, S.D. Clarke, Pulse shape discrimination in the plastic scintillator EJ-299-33. Nucl. Instrum. Meth. A 723, 19–23 (2013)

    Article  ADS  Google Scholar 

  12. N.Z. Galunov, V.P. Seminozhenko, Radioluminescence of Organic Condensed Media (Naukova Dumka, Kyiv, 2015). [in Russian]

    Google Scholar 

  13. N.L. Karavaeva, O.A. Tarasenko, Development of new composite scintillators based of organic single crystal grains. Funct. Mater. 16(1), 92–96 (2009)

    Google Scholar 

  14. N.Z. Galunov, B.V. Grinyov, N.L. Karavaeva et al., Development of new composite scintillation materials based on organic crystalline grains. IEEE Trans. Nucl. Sci. 56(3), 904–910 (2009)

    Article  ADS  Google Scholar 

  15. S.K. Lee, J.B. Son, K.H. Jo et al., Development of large-area composite stilbene scintillator for fast neutron detection. J. Nucl. Sci. Technol. 51(1), 37–47 (2014)

    Article  ADS  Google Scholar 

  16. J.H. Baker, N.Z. Galunov, O.A. Tarasenko, Variation of scintillation light yield of organic crystalline solids for different temperatures. IEEE Trans. Nucl. Sci. 55(5), 2736–2738 (2008)

    Article  ADS  Google Scholar 

  17. N.L. Karavaeva, Combined composite scintillation detector or separate measurements of fast and thermal neutrons. Funct. Mater. 17(4), 549–553 (2010)

    Google Scholar 

  18. N.L. Karavaeva, Composite scintillators as new type of a scintillation material. Probl. At. Sci. Technol. 93(5). Series: Nuclear Physics Investigations 63, 91–97 (2014)

    Google Scholar 

  19. J.H. Baker, N.Z. Galunov, A.M. Stepanenko, O.A. Tarasenko, Some aspects of discrimination techniques for the measurement of neutrons and photons of gamma radiation in geological applications. Radiat. Meas. 38(4–6), 817–820 (2004)

    Article  Google Scholar 

  20. C.W.E. van Eijk, A. Bessière, P. Dorenbos, Inorganic thermal-neutron scintillators. Nucl. Instrum. Meth. A 529(1–3), 260–267 (2004)

    Article  ADS  Google Scholar 

  21. N.Z. Galunov, B.V. Grinyov, N.V. Karavaeva et al., Gd-bearing composite scintillators as the new thermal neutron detectors. IEEE Trans. Nucl. Sci. 58(1), 339–346 (2011)

    Article  ADS  Google Scholar 

  22. J.H. Baker, N.Z. Galunov, V.G. Kostin et al., A technique for the selective detection of neutrons in geological applications. Probl. At. Sci. Technol. 51(5). Series: Nuclear Physics Investigations 48, 126–130 (2007)

    Google Scholar 

  23. N.Z. Galunov, S.V. Budakovsky, N.L. Karavaeva et al., New effective organic scintillators for fast neutron and short-range radiation detection. IEEE Trans. Nucl. Sci. 54(6), 2734–2740 (2007)

    Article  ADS  Google Scholar 

  24. J. Haruna, J.H. Kaneko, M. Higuchi et al., Response function measurement of Gd2Si2O5 scintillator for neutrons. In: Proceedings of IEEE Nuclear Science Symposium Conference Record, Honolulu, Hawaii, 27 October–3 November 2007

    Google Scholar 

  25. N.Z. Galunov, O.A. Tarasenko, Effect of polarization on recombination of charge states in an ionizing particle track in organic molecular crystals. Mol. Cryst. Liq. Cryst. 606(1), 176–188 (2015)

    Article  Google Scholar 

  26. S.V. Budakovsky, N.Z. Galunov, B.V. Grinyov et al., Stilbene crystalline powder in polymer base as a new fast neutron detector. Radiat. Meas. 42(4–5), 565–568 (2007)

    Article  Google Scholar 

  27. N.Z. Galunov, B.V. Grinyov, J.K. Kim et al., Novel fast neutron detectors for environmental and security applications. J. Nucl. Sci. Technol. 5, 367–370 (2008)

    Article  Google Scholar 

  28. O. Tarasenko, N. Galunov, N. Karavaeva et al., Stilbene composite scintillators as detectors of fast neutrons emitted by 252Cf. Radiat. Meas. 58, 61–65 (2013)

    Article  Google Scholar 

  29. N.Z. Galunov, O.A. Tarasenko, V.A. Tarasov, Optical and scintillation properties of stilbene polycrystalline and composite materials. Funct. Mater. 22(1), 61–68 (2015)

    Article  Google Scholar 

  30. M. Balcerzyk, M. Moszynski, M. Kapusta et al., YSO, LSO, GSO and LGSO. A study of energy resolution and nonproportionality. IEEE Trans. Nucl. Sci. 47(4), 1319–1323 (2000)

    Article  ADS  Google Scholar 

  31. S. Kawamura, J.H. Kaneko, M. Higuchi et al., Floating zone growth and scintillation characteristics of cerium-doped gadolinium pyrosilicate single crystals. IEEE Trans. Nucl. Sci. 54(4), 1383–1386 (2007)

    Article  ADS  Google Scholar 

  32. ET Enterprises, 9272B series data sheet. Available: https://my.et-enterprises.com/pdf/9272B.pdf

  33. N.Z. Galunov, B.V. Grinyov, N.L. Karavaeva et al., Combined composite scintillation detector for separate measurements of fast and thermal neutrons. In: Proceedings of IEEE Nuclear Science Symposium Conference Record, Knoxville, Tennessee, 30 October–6 November 2010

    Google Scholar 

  34. S.K. Lee, Y.H. Cho, B.H. Kang et al., Scintillation properties of composite stilbene crystal for neutron detection. Prog. Nucl. Sci. Technol. 1(1), 292–295 (2011)

    Article  Google Scholar 

  35. J. Iwanowska, L. Swiderski, M. Moszynski et al., Neutron/gamma discrimination properties of composite scintillation detectors. J. Instrum. 6(7007), 1–10 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg A. Tarasenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Galunov, N.Z., Karavaeva, N.L., Tarasenko, O.A. (2017). Crystalline and Composite Scintillators for Fast and Thermal Neutron Detection. In: Korzhik, M., Gektin, A. (eds) Engineering of Scintillation Materials and Radiation Technologies. ISMART 2016. Springer Proceedings in Physics, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-319-68465-9_12

Download citation

Publish with us

Policies and ethics