Skip to main content

Composite Scintillator

  • Conference paper
  • First Online:
Engineering of Scintillation Materials and Radiation Technologies (ISMART 2016)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 200))

Abstract

The review of composite scintillators for cost-efficient large area detectors is presented. Design features of composite scintillator depending on the applications are discussed. Scintillation and optical materials for their production are considered. Along with single crystals scintillation powders obtained by sol-gel method as well as by solid state synthesis can be used for composites fabrication. Regularities of the light collection in composite layer are described. Composite scintillators can be a base for neutron and gamma detectors for medical radiography as well. For high energy physics (HEP) the optimum design with the maximum light output and high radiation hardness is proposed. It is shown that the composite scintillator with quartz light conducting layer and YAG:Ce wavelength shifting light guide can provide the optimal solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Gektin, N. Shiran, N. Pogorelova et al., Inorganic-organic rubbery scuntillators. Nucl. Instr. Meth. Phys. Res. Sect. A 486, 191–195 (2002)

    Article  ADS  Google Scholar 

  2. S.L. Miller, V. Gaysinsiy, I. Shestakova, V. Nagarkar, Recent advances in columnar CsI (Tl) scintillator screens, in Penetrating Radiation Systems and Applications VII, Vol. 5923 (2005)

    Google Scholar 

  3. van Eijk Carel.W.E., Inorganic scintillators in medical imaging detectors Nucl. Instr. Meth. A. 509, 17–25 (2003)

    Google Scholar 

  4. V.V. Nagarkar, T.K. Gupta, S.R. Miller et al., Structured CsI (T1) scintillators for x-ray imaging applications. IEEE Trans. Nucl. Sci. 492, 492–496 (1998)

    Article  ADS  Google Scholar 

  5. V.S. Litvin, A.D. Belayev, S.M. Ignatov et al., ZnS(Ag)/6LiF and LiI(Eu) Scintillators and silicon photomultipliers for thermal neutron detectors with high space and time resolution. Bull. Rus. Acad. Sci. Phys. 73, 219–221 (2009)

    Google Scholar 

  6. S. Afanasiev, P. de Barbaro, A. Boyarintsev, HE upgrade beyond phase 1. Finger scintillator option. CMS Note, V. 3 (2014)

    Google Scholar 

  7. G.S. Atoyan, V.A. Gladyshev, S.N. Gninenko et al., Lead-scintillator electromagnetic calorimeter with wavelength shifting fiber readout. Nucl. Instr. Meth. Phys. Res. Sect. A A320, 144–154 (1992)

    Article  ADS  Google Scholar 

  8. M.C. Celina, A.R. Dayile, A. Quintana, A perspective on the inherent oxidation sensitivity of epoxy materials. Polymer 54, 3290–3296 (2013)

    Article  Google Scholar 

  9. C.L. Hunks, D.J. Hunzmun, in Radiation Effects Design Handbook, Section 3. Electrical Insulating Materials, NASA (1971)

    Google Scholar 

  10. G. Lee, Radiation resistance of elastomer. IEEE Trans. Nucl. Sci. 32, 3806–3808 (1985)

    Article  ADS  Google Scholar 

  11. C. Zorn, S. Majewski, R. Wojcik, K.F. Johnson, Progress in the design of a radiation-hard plastic scintillator. IEEE Trans. Nucl. Sci. 38, 194–199 (1991)

    Article  ADS  Google Scholar 

  12. A. Quaranta, S. Carturan, M. Cinausero et al., Characterization of polysiloxane organic scintillators produced with different phenyl containing blends. Mat. Chem. Phys. 137, 951–958 (2013)

    Google Scholar 

  13. A. Quaranta, S. Carturan, T. Marchi et al., Radiation hardness of polysiloxane scintillators analyzed by ion beam induced luminescence. Nucl. Instr. Meth. A. 385, 3155–3159 (1997)

    Google Scholar 

  14. A. Boyarintsev, N. Galunov, N. Karavaeva et al., Study of radiation resistant gel bases for composite detectors. Func. Mat. 28, 271–276 (2013)

    Google Scholar 

  15. A. Norrisa, J. DeGroot, F. Nishidaa Jr. et al., Silicone materials for optical applications. www.dowcorning.com

  16. http://www.dowcorning.com/

  17. J. McDonald, Advanced silicone materials for LED lighting, in Dow Corning Corporation for the DOE SLL Workshop, January 28th, 2015

    Google Scholar 

  18. T.E. Gorbacheva, V.A. Tarasov, N.Z. Galunov, Light collection simulation when determining light yield of single crystal and polycrystalline organics scintillators. Func. Mat. 22, 408–415 (2015)

    Google Scholar 

  19. J. Silva, S. Lanceros-Mendes, G. Minas, J.G. Rocha, CMOS X-ray image sensor array, in 14th IEEE International Conference on Electronics, Circuits and Systems. pp. 1067–1070 (2007)

    Google Scholar 

  20. E.F. Voronkin, Digital X-ray imaging using matrix detectors and composite screens. Func. Mat. 21, 112–118 (2014)

    Article  Google Scholar 

  21. V. Litichevskyi, Composite scintillation panels and elements based on fine-grained granules of crushed crystals. Func. Mat. 20, 259–265 (2013)

    Article  Google Scholar 

  22. S.V. Afanasiev, A.Yu. Boyarintsev, M.V. Danilov, “Finger” structure of tiles in CMS endcap hadron calorimeters. CMS Note. 2 (2015)

    Google Scholar 

  23. E. Auffray, A. Fedorov, M. Korjik et al., The impact of proton induced radioactivity on the LSO:Ce, YSO:Ce scintillation detectors. IEEE 2013 NSS/MIC

    Google Scholar 

  24. E. Auffray, A. Borisevitch, A. Gektin et al., Radiation damage effects in Y2SiO5:Ce scintillation crystals under γ-quanta and 24 GeV protons. Nucl. Instr. Meth. A. 783, 117–120 (2015)

    Article  ADS  Google Scholar 

  25. M.V. Derdzyan, K.L. Ovanesyan, A.G. Petrosyan et al., Radiation hardness of LuAG:Ce and LuAG:Pr scintillator crystals. J. Cryst. Growth 361, 212–216 (2012)

    Article  ADS  Google Scholar 

  26. T. Butaeva, I. Ghambaryan, M. Mkrtchyan, Recharging processes of Ce3+ in gamma-irradiated YAG:Ce single crystals. Opt. Spec. 118, 247–254 (2015)

    Article  ADS  Google Scholar 

  27. M. Kapusta, M. Moszynski, M. Balcerzyk, J. Pawelke, Comparison of the scintillation properties of LSO:Ce and YSO:Ce as detectors for high resolution PET. Ann. Rep. 73–74 (1999)

    Google Scholar 

  28. Ya. Gerasymov, Technology for obtaining large size complex oxide crystals for experiments on muon-electron conversion registration in high energy physics. Sci. Innovation 10, 26–33 (2014)

    Article  Google Scholar 

  29. E. Miholova, M. Nikl, J.A. Mares, Luminescence and scintillation properties of YAG:Ce single crystal and optical ceramics. J. Lum. 126, 77–88 (2007)

    Article  ADS  Google Scholar 

  30. X. Zenga, G. Zhaoa, J. Xua et al., Effect of air annealing on the spectral properties of Ce:Y3Al5O12 single crystals grown by the temperature gradient technique. J. Cryst. Growth 274, 495–499 (2005)

    Article  ADS  Google Scholar 

  31. Yu. Zorenko, J.A. Mares, P. Prusa et al., Luminescence and scintillation characteristics of YAG:Ce single crystalline films and single crystals. Rad. Measur. 45, 389–391 (2010)

    Article  Google Scholar 

  32. G. Leinweber, D.P. Barry, M.J. Trbovich et al., Neutron capture and total cross-section measurements and resonance parameters of gadolinium. Nucl. Sci. Eng. 154, 261–279 (2006)

    Article  Google Scholar 

  33. A. Masalov, O. Viagin, I. Ganina, Yu. Malyukin, Mechanisms of charge interaction in co-doped Lu2SiO5:Ce3+ crystals. Func. Mat. 17, 311–316 (2010)

    Google Scholar 

  34. D.V. Orlinski, V.T. Gritsyna, Radiation resistance investigation of quartz glass KU-1. Probl. Atom. Sci. Tech. 5, 60–63 (2000)

    Google Scholar 

  35. E. Colby, G. Lum, T. Plettner et al., Gamma radiation studies on optical materials. IEEE Trans. Nucl. Sci. 49, 2857–2867 (2002)

    Article  ADS  Google Scholar 

  36. http://www.kuraray.com/

  37. A.Yu. Boyarintsev, T.A. Nepokupna, Yu.D. Onufriev, N.L. Karavaeva, A.V. Krech, M. Galunov, Scintillation element and its manufacturing method. Ukraine patent 111455 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Boyarintsev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boyarintsev, A.Y., Nepokupnaya, T.A., Onufriyev, Y.D., Tarasov, V.A. (2017). Composite Scintillator. In: Korzhik, M., Gektin, A. (eds) Engineering of Scintillation Materials and Radiation Technologies. ISMART 2016. Springer Proceedings in Physics, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-319-68465-9_11

Download citation

Publish with us

Policies and ethics