Skip to main content

Fast Method to Fit a \(\mathcal {C}^1\) Piecewise-Bézier Function to Manifold-Valued Data Points: How Suboptimal is the Curve Obtained on the Sphere \(\mathbb {S}^2\)?

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10589))

Included in the following conference series:

  • 2243 Accesses

Abstract

We propose an analysis of the quality of the fitting method proposed in [7]. This method fits smooth paths to manifold-valued data points using \(\mathcal {C}^1\) piecewise-Bézier functions. This method is based on the principle of minimizing an objective function composed of a data-attachment term and a regularization term chosen as the mean squared acceleration of the path. However, the method strikes a tradeoff between speed and accuracy by following a strategy that is guaranteed to yield the optimal curve only when the manifold is linear. In this paper, we focus on the sphere \(\mathbb {S}^2\). We compare the quality of the path returned by the algorithms from [7] with the path obtained by minimizing, over the same search space of \(\mathcal {C}^1\) piecewise-Bézier curves, a finite-difference approximation of the objective function by means of a derivative-free manifold-based optimization method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Absil, P.A., Gousenbourger, P.Y., Striewski, P., Wirth, B.: Differentiable piecewise-Bézier surfaces on riemannian manifolds. SIAM J. Imaging Sci. 9(4), 1788–1828 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arnould, A., Gousenbourger, P.-Y., Samir, C., Absil, P.-A., Canis, M.: Fitting smooth paths on riemannian manifolds: endometrial surface reconstruction and preoperative mri-based navigation. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2015. LNCS, vol. 9389, pp. 491–498. Springer, Cham (2015). doi:10.1007/978-3-319-25040-3_53

    Chapter  Google Scholar 

  3. Bergmann, R., Laus, F., Steidl, G., Weinmann, A.: Second order differences of cyclic data and applications in variational denoising. SIAM J. Imaging Sci. 7(4), 2916–2953 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boumal, N.: Interpolation and regression of rotation matrices. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2013. LNCS, vol. 8085, pp. 345–352. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40020-9_37

    Chapter  Google Scholar 

  5. Boumal, N., Mishra, B., Absil, P.A., Sepulchre, R.: Manopt, a matlab toolbox for optimization on manifolds. J. Mach. Learn. Res. 15, 1455–1459 (2014). http://www.manopt.org

    MATH  Google Scholar 

  6. Farin, G.: Curves and Surfaces for CAGD, 5th edn. Academic Press, New York (2002)

    Google Scholar 

  7. Gousenbourger, P.Y., Massart, E., Musolas, A., Absil, P.A., Jacques, L., Hendrickx, J.M., Marzouk, Y.: Piecewise-Bézier \(C^1\) smoothing on manifolds with application to wind field estimation. In: ESANN2017, to appear (2017)

    Google Scholar 

  8. Machado, L., Monteiro, M.T.T.: A numerical optimization approach to generate smoothing spherical splines. J. Geom. Phys. 111, 71–81 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  9. Popiel, T., Noakes, L.: Bézier curves and \(\cal{C}^2\) interpolation in Riemannian manifolds. J. Approximation Theory 148(2), 111–127 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Pyta, L., Abel, D.: Interpolatory galerkin models for the navier-stokes-equations. IFAC Pap. Online 49(8), 204–209 (2016)

    Article  MathSciNet  Google Scholar 

  11. Samir, C., Absil, P.A., Srivastava, A., Klassen, E.: A gradient-descent method for curve fitting on Riemannian manifolds. Found. Comput. Math. 12, 49–73 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Sanguinetti, G., Bekkers, E., Duits, R., Janssen, M.H.J., Mashtakov, A., Mirebeau, J.-M.: Sub-riemannian fast marching in SE(2). Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. LNCS, vol. 9423, pp. 366–374. Springer, Cham (2015). doi:10.1007/978-3-319-25751-8_44

    Chapter  Google Scholar 

  13. Su, J., Dryden, I., Klassen, E., Le, H., Srivastava, A.: Fitting smoothing splines to time-indexed, noisy points on nonlinear manifolds. Image Vis. Comput. 30(67), 428–442 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Yves Gousenbourger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gousenbourger, PY., Jacques, L., Absil, PA. (2017). Fast Method to Fit a \(\mathcal {C}^1\) Piecewise-Bézier Function to Manifold-Valued Data Points: How Suboptimal is the Curve Obtained on the Sphere \(\mathbb {S}^2\)?. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68445-1_69

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68444-4

  • Online ISBN: 978-3-319-68445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics