Skip to main content

Massively Parallel Multigrid for the Simulation of Skin Permeation on Anisotropic Tetrakaidecahedral Cell Geometries

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ' 17

Abstract

Numerical simulation based on mathematical models is an important pillar for enhancing the understanding of permeation processes in the skin. To adequately resolve the complex geometrical structure of the skin, special models based on tetrakaidecahedral cells have been suggested. While these models preserve many of the desirable properties of the underlying geometry, they impose challenges regarding mesh generation and solver robustness.

To improve robustness of the used multigrid solver, we propose a new mesh and hierarchy structure with good aspect ratios and angle conditions. Furthermore, we show how those meshes can be used in scalable massively parallel multigrid based computations of permeation processes in the skin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Mitragotri, Y.G. Anissimov, A.L. Bunge, H.F. Frasch, J.Hadgraft, R.H. Guy, G.B. Kasting, M.E. Lane, M.S. Roberts, Mathematical models of skin permeability: an overview. Int. J. Pharm. 418, 115–129 (2011)

    Article  Google Scholar 

  2. A. Naegel, M. Heisig, G. Wittum, Detailed modeling of skin penetration - an overview. Adv. Drug Deliv. Rev. 65(2), 191–207 (2013)

    Article  Google Scholar 

  3. T.D. Allen, C.S. Potten, Significance of cell shape in tissue architecture. Nature 264(5586), 545–547 (1976)

    Article  Google Scholar 

  4. W. Thomson, On the division of space with minimum partitional area. Philos. Mag. 24, 503 (1887)

    Article  MATH  Google Scholar 

  5. D. Feuchter, M. Heisig, G. Wittum, A geometry model for the simulation of drug diffusion through the stratum corneum. Comput. Vis. Sci. 9, 117–130 (2006)

    Article  MathSciNet  Google Scholar 

  6. A. Nägel, M. Heisig, G. Wittum, A comparison of two-and three-dimensional models for the simulation of the permeability of human stratum corneum. Eur. J. Pharm. Biopharm. 72(2), 332–338 (2009)

    Article  Google Scholar 

  7. I. Muha, A. Naegel, S. Stichel, A. Grillo, M. Heisig, G. Wittum, Effective diffusivity in membranes with tetrakaidekahedral cells and implications for the permeability of human stratum corneum. J. Membr. Sci. 368, 18–25 (2010)

    Article  Google Scholar 

  8. M. Yokouchi, T. Atsugi, M. Van Logtestijn, R.J. Tanaka, M. Kajimura, M. Suematsu, M. Furuse, M. Amagai, A. Kubo, Epidermal cell turnover across tight junctions based on Kelvin’s tetrakaidecahedron cell shape. eLife 5:e19593 (2016). https://doi.org/10.7554/eLife.19593

    Article  Google Scholar 

  9. R. Wittum, A. Naegel, M. Heisig, G. Wittum, Mathematical modelling of the viable epidermis: impact of cell shape and vertical arrangement (2017, submitted)

    Google Scholar 

  10. A. Nägel, Schnelle Löser für große Gleichungssysteme mit Anwendungen in der Biophysik und den Lebenswissenschaften, PhD thesis, Universität Heidelberg, 2010

    Google Scholar 

  11. S. Reiter, A. Vogel, A. Nägel, G. Wittum, A massively parallel multigrid method with level dependent smoothers for problems with high anisotropies, in High Performance Computing in Science and Engineering ’16 (Springer, Cham, 2016), pp. 667–675

    Google Scholar 

  12. Y.G. Anissimov, M.S. Roberts, Diffusion modeling of percutaneous absorption kinetics: 3. Variable diffusion and partition coefficients, consequences for stratum corneum depth profiles and desorption kinetics. J. Pharm. Sci. 93(2), 470–487 (2004)

    Google Scholar 

  13. R. Schulz, K. Yamamoto, A. Klossek, R. Flesch, S. Hönzke, F. Rancan, A. Vogt, U. Blume-Peytavi, S. Hedtrich, M. Schäfer-Korting et al., Data-based modeling of drug penetration relates human skin barrier function to the interplay of diffusivity and free-energy profiles. Proc. Natl. Acad. Sci. 114(14), 3631–3636 (2017)

    Article  Google Scholar 

  14. D. Feuchter, Geometrie- und Gittererzeugung für anisotrope Schichtengebiete, PhD thesis, Universität Heidelberg, 2008

    Google Scholar 

  15. Promesh, http://www.promesh3d.com

  16. S. Reiter, A. Vogel, I. Heppner, M. Rupp, G. Wittum, A massively parallel geometric multigrid solver on hierarchically distributed grids. Comput. Vis. Sci. 16(4), 151–164 (2013)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by the DFG in the German Priority Programme 1648—Software for Exascale Computing in the project Exasolvers (WI 1037/24-2) and by the German Ministry of Economics and Technology (BMWi) (02E11476B). We thank the HLRS for the opportunity to use Hazel Hen and their kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Reiter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Reiter, S., Nägel, A., Vogel, A., Wittum, G. (2018). Massively Parallel Multigrid for the Simulation of Skin Permeation on Anisotropic Tetrakaidecahedral Cell Geometries. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ' 17 . Springer, Cham. https://doi.org/10.1007/978-3-319-68394-2_27

Download citation

Publish with us

Policies and ethics