Skip to main content

A Supervoxel Based Random Forest Synthesis Framework for Bidirectional MR/CT Synthesis

  • Conference paper
  • First Online:
Simulation and Synthesis in Medical Imaging (SASHIMI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10557))

Included in the following conference series:

Abstract

Synthesizing magnetic resonance (MR) and computed tomography (CT) images (from each other) has important implications for clinical neuroimaging. The MR to CT direction is critical for MRI-based radiotherapy planning and dose computation, whereas the CT to MR direction can provide an economic alternative to real MRI for image processing tasks. Additionally, synthesis in both directions can enhance MR/CT multi-modal image registration. Existing approaches have focused on synthesizing CT from MR. In this paper, we propose a multi-atlas based hybrid method to synthesize T1-weighted MR images from CT and CT images from T1-weighted MR images using a common framework. The task is carried out by: (a) computing a label field based on supervoxels for the subject image using joint label fusion; (b) correcting this result using a random forest classifier (RF-C); (c) spatial smoothing using a Markov random field; (d) synthesizing intensities using a set of RF regressors, one trained for each label. The algorithm is evaluated using a set of six registered CT and MR image pairs of the whole head.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achanta, R., et al.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  2. Bai, W., et al.: Multi-atlas segmentation with augmented features for cardiac MR images. Med. Image Anal. 19(1), 98–109 (2015)

    Article  MathSciNet  Google Scholar 

  3. Boykov, Y., et al.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  4. Burgos, N., et al.: Attenuation correction synthesis for hybrid PET-MR scanners: application to brain studies. IEEE Trans. Med. Imaging 33(12), 2332–2341 (2014)

    Article  Google Scholar 

  5. Burgos, N., et al.: Robust CT synthesis for radiotherapy planning: application to the head and neck region. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 476–484. Springer, Cham (2015). doi:10.1007/978-3-319-24571-3_57

    Chapter  Google Scholar 

  6. Cao, X., et al.: Dual-core steered non-rigid registration for multi-modal images via bi-directional image synthesis. Med. Image Anal. 41, 18–31 (2017)

    Article  Google Scholar 

  7. Chen, M., et al.: Cross contrast multi-channel image registration using image synthesis for MR brain images. Med. Image Anal. 36, 2–14 (2017)

    Article  Google Scholar 

  8. Huynh, T., et al.: Estimating CT image from MRI data using structured random forest and auto-context model. IEEE Trans. Med. Imaging 35(1), 174–183 (2016)

    Article  Google Scholar 

  9. Iglesias, J.E., Konukoglu, E., Zikic, D., Glocker, B., Van Leemput, K., Fischl, B.: Is synthesizing MRI contrast useful for inter-modality analysis? In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 631–638. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40811-3_79

    Chapter  Google Scholar 

  10. Jog, A., et al.: Random forest regression for magnetic resonance image synthesis. Med. Image Anal. 35, 475–488 (2017)

    Article  Google Scholar 

  11. Komodakis, N.: Image completion using global optimization. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 442–452. IEEE (2006)

    Google Scholar 

  12. Lee, J., et al.: Multi-atlas-based CT synthesis from conventional MRI with patch-based refinement for MRI-based radiotherapy planning. In: SPIE Medical Imaging, pp. 101331I–101331I-6. International Society for Optics and Photonics (2017)

    Google Scholar 

  13. Pham, D.L., et al.: Current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2(1), 315–337 (2000)

    Article  MathSciNet  Google Scholar 

  14. Riederer, S.J., et al.: Automated MR image synthesis: feasibility studies. Radiology 153(1), 203–206 (1984)

    Article  Google Scholar 

  15. Roy, S., et al.: Magnetic resonance image example-based contrast synthesis. IEEE Trans. Med. Imaging 32(12), 2348–2363 (2013)

    Article  Google Scholar 

  16. Roy, S., et al.: PET attenuation correction using synthetic CT from ultrashort echo-time MR imaging. J. Nucl. Med. 55(12), 2071–2077 (2014)

    Article  Google Scholar 

  17. Wang, H., et al.: Multi-atlas segmentation with joint label fusion. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 611–623 (2013)

    Article  Google Scholar 

  18. Zhao, C., et al.: Whole brain segmentation and labeling from CT using synthetic MR images. In: 8th International Workshop on Machine Learning in Medical Imaging. LNCS. Springer, Heidelberg (2017)

    Google Scholar 

Download references

Acknowledgments

This work was supported by NIH/NIBIB grant R01-EB017743.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhao, C., Carass, A., Lee, J., Jog, A., Prince, J.L. (2017). A Supervoxel Based Random Forest Synthesis Framework for Bidirectional MR/CT Synthesis. In: Tsaftaris, S., Gooya, A., Frangi, A., Prince, J. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2017. Lecture Notes in Computer Science(), vol 10557. Springer, Cham. https://doi.org/10.1007/978-3-319-68127-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68127-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68126-9

  • Online ISBN: 978-3-319-68127-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics