Skip to main content

Molecular Simulation of Ionic Liquids: Complex Dynamics and Structure

  • Conference paper
  • First Online:
Algebraic Modeling of Topological and Computational Structures and Applications (AlModTopCom 2015)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 219))

  • 619 Accesses

Abstract

Ionic Liquids (ILs) are organic salts with melting temperatures below \({100^\circ }\) C. They are characterized by an exceptional combination of properties that renders them very good candidates for use in many cutting-edge technological applications. The organic and simultaneously ionic nature of the constitutive ions results in diverse interactions that directly affect the microscopic structure and the dynamical behaviour of ILs. Molecular simulation methods using optimized force fields are applied for the study of the complex dynamics and the spatial organization in ILs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Holbrey, J., Seddon, K.: Ionic liquids. Clean Prod. Process. 1, 223–236 (1999)

    Google Scholar 

  2. Wasserscheid, P., Welton, T.: Ionic Liquids in Synthesis, 2nd edn. Wiley-VCH Weinheim, Germany (2008)

    Google Scholar 

  3. Gabriel, S., Weiner, J.: Ueber einige Abkömmlinge des Propylamins. Ber. Dtsch. Chem. Ges. 21, 2669–2679 (1888)

    Article  Google Scholar 

  4. Walden, P.: Ueber die Molekulargrösse und elektrische Leitfähigkeit einiger geschmolzener Salze. Bull. Acad. Imp. Sci. (St. Ptersbourg) 8, 405–422 (1914)

    Google Scholar 

  5. Rogers, R.D.: Reflections on ionic liquids. Nature 447, 917–918 (2007)

    Article  Google Scholar 

  6. Kirchner, B. (ed.): Topics in Current Chemistry- Ionic Liquids, vol. 290. Springer, Berlin (2010)

    Google Scholar 

  7. Handy, S.T. (ed.): Ionic Liquids - Classes and Properties. InTech, Rijeka, Croatia (2011)

    Google Scholar 

  8. Zhang, S., Lu, X., Zhou, Q., Li, X., Zhang, X., Li, S.: Ionic Liquids - Physicochemical Properties. Elsevier, Amsterdam (2009)

    Google Scholar 

  9. Visser, A.E., Bridges, N.J., Rogers, R.D. (eds.): Ionic Liquids: Science and Applications. ACS Symposium Series, vol. 1117 (2012)

    Google Scholar 

  10. Vergadou, N., Androulaki, E., Economou, I.G.: Molecular simulation methods for CO\(_2\) capture and gas separation with emphasis on ionic liquids. In: Papadopoulos, A.I., Seferlis, P. (eds.) Process Systems and Materials for CO2 Capture: Modelling, Design, Control and Integration, pp. 79–111. Wiley, Chichester (2017)

    Chapter  Google Scholar 

  11. Radmin, M., de Loos, T.W., Vlugt, T.J.H.: State-of-the-Art of CO2 capture with ionic liquids. Ind. Eng. Chem. Res. 51, 8149–8177 (2012)

    Article  Google Scholar 

  12. Weingärtner, H.: Understanding ionic liquids at the molecular level: facts, problems, and controversies. Angew. Chem. - Int. Edition 47(4), 654–670 (2008)

    Article  Google Scholar 

  13. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, Oxford (1987)

    MATH  Google Scholar 

  14. Frenkel, D., Smit, B.: Understanding Molecular Simulation - From Algorithms to Applications. Academic Press, San Diego (2002)

    MATH  Google Scholar 

  15. Haile, J.M.: Molecular Dynamics Simulation: Elementary Methods. Wiley, New York (1992)

    Google Scholar 

  16. Rapaport, D.C.: The Art of Molecular Dynamics Simulation, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  17. Salanne, M.: Simulations of room temperature ionic liquids: from polarizable to coarse-grained force fields. Phys. Chem. Chem. Phys. 17, 14270–14279 (2015)

    Article  Google Scholar 

  18. Batista, M.L.S., Coutinho, J.A.P., Gomes, J.R.B.: Prediction of ionic liquids properties through molecular dynamics simulations. Curr. Phys. Chem. 4, 151–172 (2014)

    Article  Google Scholar 

  19. Dommert, F., Wendler, K., Berger, R., Delle Site, L., Holm, C.: Force fields for studying the structure and dynamics of ionic liquids: a critical review of recent developments. Chem. Phys. Chem. 13(7), 1625–1637 (2012)

    Article  Google Scholar 

  20. Androulaki, E., Vergadou, N., Economou, I.G.: Analysis of the heterogeneous dynamics of imidazolium-based [Tf\(_2\)N\(^-\)] ionic liquids using molecular simulation. Mol. Phys. 112, 2694–2706 (2014)

    Article  Google Scholar 

  21. Vergadou, N., Androulaki, E., Hill, J.-R., Economou, I.G.: Molecular simulations of imidazolium-based tricyanomethanide ionic liquids using an optimized classical force field. Phys. Chem. Chem. Phys. 18, 6850–6860 (2016)

    Article  Google Scholar 

  22. Wang, Y., Voth, G.A.: Unique spatial heterogeneity in ionic liquids. J. Am. Chem. Soc. 127, 12192–12193 (2005)

    Article  Google Scholar 

  23. Androulaki, E., Vergadou, N., Ramos, J., Economou, I.G.: Structure, thermodynamic and transport properties of imidazolium-based bis(trifluoromethylsulfonyl)imide ionic liquids from molecular dynamics simulations. Mol. Phys. 110(11–12), 1139–1152 (2012)

    Article  Google Scholar 

  24. Ji, Y., Shi, R., Wang, Y., Saielli, G.: Effect of the chain length on the structure of ionic liquids: from spatial heterogeneity to ionic liquid crystals. J. Phys. Chem. B 117, 1104–1109 (2013)

    Article  Google Scholar 

  25. Donati, C., Glotzer, S.C., Poole, P.H., Kob, W., Plimpton, S.J.: Spatial correlations of mobility and immobility in a glass-forming Lennard-Jones liquid. Phys. Rev. E 60(3), 3107–3119 (1999)

    Article  Google Scholar 

  26. Qian, J., Hentschke, R., Heuer, A.: On the origin of dynamic heterogeneities in glass-forming liquids. J. Chem. Phys. 111(22), 10177–10182 (1999)

    Article  Google Scholar 

  27. Ediger, M.D.: Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99–128 (2000)

    Article  Google Scholar 

  28. Debenedetti, P.G., Stillinger, F.H.: Supercooled liquids and the glass transition. Nature 410, 259–267 (2001)

    Article  Google Scholar 

  29. Richert, R.: Heterogeneous dynamics in liquids: fluctuations in space and time. J. Phys.: Condens. Matter 14(23), R703–R738 (2002)

    Google Scholar 

  30. Chaudhuri, P., Sastry, S., Kob, W.: Tracking heterogeneous dynamics during the alpha relaxation of a simple glass former. Phys. Rev. Lett. 101(19), 190601 (2008)

    Article  Google Scholar 

  31. Paul, A., Mandal, P.K., Samanta, A.: On the optical properties of the imidazolium ionic liquids. J. Phys. Chem. B 109(18), 9148–9153 (2005)

    Article  Google Scholar 

  32. Aki, S.N.V.K., Brennecke, J.F., Samanta, A.: How polar are room-temperature ionic liquids? Chem. Commun. 5, 413–414 (2001)

    Article  Google Scholar 

  33. Ito, N., Arzhantsev, S., Maroncelli, M.: The probe dependence of solvation dynamics and rotation in the ionic liquid 1-butyl-3-methyl-imidazolium hexafluorophosphate. Chem. Phys. Lett. 396(1–3), 83–91 (2004)

    Article  Google Scholar 

  34. Jin, H., Li, X., Maroncelli, M.: Heterogeneous solute dynamics in room temperature ionic liquids. J. Phys. Chem. B 111(48), 13473–13478 (2007)

    Article  Google Scholar 

  35. Hu, Z., Margulis, C.J.: Heterogeneity in a room-temperature ionic liquid: persistent local environments and the red-edge effect. Proc. Nat. Acad. Sci. USA 103(4), 831–836 (2006)

    Article  Google Scholar 

  36. Del Pópolo, M.G., Voth, G.A.: On the structure and dynamics of ionic liquids. J. Phys. Chem. B 108(5), 1744–1752 (2004)

    Article  Google Scholar 

  37. Ishida, T., Shirota, H.: Dicationic versus monocationic ionic liquids: distinctive ionic dynamics and dynamical heterogeneity. J. Phys. Chem. B 117(4), 1136–1150 (2013)

    Article  Google Scholar 

  38. Habasaki, J., Ngai, K.L.: Molecular dynamics studies of ionically conducting glasses and ionic liquids: wave number dependence of intermediate scattering function. J. Chem. Phys. 133(12), 124505 (2010)

    Article  Google Scholar 

  39. Urahata, S.M., Ribeiro, M.C.C.: Unraveling dynamical heterogeneity in the ionic liquid 1-Butyl-3-methylimidazolium chloride. J. Phys. Chem. Lett. 1(11), 1738–1742 (2010)

    Article  Google Scholar 

  40. Liu, H., Maginn, E.: A molecular dynamics investigation of the structural and dynamic properties of the ionic liquid 1-n-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide. J. Chem. Phys. 135(12), 124507 (2011)

    Article  Google Scholar 

  41. Hu, Z., Margulis, C.J.: Room-temperature ionic liquids: slow dynamics, viscosity and the red edge effect. Acc. Chem. Res. 40(11), 1097–1105 (2007)

    Article  Google Scholar 

  42. Habasaki, J., Ngai, K.L.: Multifractal nature of heterogeneous dynamics and structures in glass forming ionic liquids. J. Non-Cryst. Solids 357(2), 446–453 (2011)

    Article  Google Scholar 

  43. Jeong, D., Choi, M.Y., Kim, H.J., Jung, Y.: Fragility, Stokes-Einstein violation, and correlated local excitations in a coarse-grained model of an ionic liquid. Phys. Chem. Chem. Phys. 12, 2001–2010 (2010)

    Article  Google Scholar 

  44. Rahman, A.: Correlations in the motion of atoms in liquid argon. Phys. Rev. 136(2A), A405–A411 (1964)

    Article  Google Scholar 

  45. Szamel, G., Flenner, E.: Independence of the relaxation of a supercooled fluid from its microscopic dynamics: Need for yet another extension of the mode-coupling theory. Europhys. Lett. 67, 779–785 (2004)

    Article  Google Scholar 

  46. Reichman, D.R., Rabani, E., Geissler, P.L.: Comparison of dynamical heterogeneity in hard-sphere and attractive glass formers. J. Phys. Chem. B 109, 14654–14658 (2005)

    Article  Google Scholar 

  47. Kob, W., Donati, C., Plimpton, S.J., Poole, P.H., Glotzer, S.C.: Dynamical heterogeneities in a supercooled Lennard-Jones liquid. Phys. Rev. Lett. 79(15), 2827–2830 (1997)

    Article  Google Scholar 

  48. Zubeir, L.F., Rocha, M.A.A., Vergadou, N., Weggemans, W.M.A., Peristeras, L.D., Schulz, P.S., Economou, I.G., Kroon, M.C.: Thermophysical properties of imidazolium tricyanomethanide ionic liquids: experiments and molecular simulation. Phys. Chem. Chem. Phys. 18, 23121–23138 (2016)

    Article  Google Scholar 

  49. Van Hove, L.: Correlations in space and time and born approximation scattering in systems of interacting particles. Phys. Rev. 95(1), 249–262 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  50. Berne, B.J., Harp, G.D.: On the calculation of time correlation functions. In: Prigogine, I., Rice, S.A. (eds.) Advances in Chemical Physics, vol. XVII, pp. 63–227. Wiley, Honoken (1970)

    Chapter  Google Scholar 

  51. Gaub, M., Fritzsche, S., Haberlandt, R., Theodorou, D.N.: Van Hove function for diffusion in zeolites. J. Phys. Chem. B 103(22), 4721–4729 (1999)

    Article  Google Scholar 

  52. Vineyard, G.H.: Scattering of slow neutrons by a liquid. Phys. Rev. 110(5), 999–1010 (1958)

    Article  Google Scholar 

  53. Urahata, S.M., Ribeiro, M.C.: Single particle dynamics in ionic liquids of 1-alkyl-3-methylimidazolium cations. J. Chem. Phys. 122(2), 024511 (2005)

    Article  Google Scholar 

  54. Einstein, A.: Investigations on the Theory of the Brownian Movement. Dover, New York (1956)

    MATH  Google Scholar 

  55. Papavassiliou, G., Fardis, M.: Nuclear Magnetic Resonance Laboratory, Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, Greece - Unpublished results

    Google Scholar 

  56. Romanos, G.E., Zubeir, L.F., Likodimos, V., Falaras, P., Kroon, M.C., Iliev, B., Adamova, G., Schubert, T.J.S.: Enhanced CO2 capture in binary mixtures of 1-alkyl-3-methylimidazolium tricyanomethanide ionic liquids with water. J. Phys. Chem. B 117, 12234–12251 (2013)

    Article  Google Scholar 

  57. Bara, J.E.: Ionic liquids in gas separation membranes. In: Hoek, E.M.V., Tarabara, V.V. (eds.) Encyclopedia of Membrane Science and Technology, pp. 1–23. Wiley, Hoboken (2013)

    Google Scholar 

  58. Kritikos, G., Vergadou, N., Economou, I.G.: Molecular dynamics simulation of highly confined glassy ionic liquids. J. Phys. Chem. C 120(2), 1013–1024 (2016)

    Article  Google Scholar 

  59. Sha, M., Dou, Q., Wu, G.: Molecular dynamics simulation of ionic liquids adsorbed onto a solid surface and confined in nanospace. In: Springborg, M. (ed.) Chemical Modelling: Applications and Theory, vol. 9, pp. 186–217. The Royal Society of Chemistry, Cambridge (2012)

    Chapter  Google Scholar 

  60. Chatel, G., Pereira, J.F.B., Debbeti, V., Wang, H., Rogers, R.D.: Mixing ionic liquids - “simple mixtures” or “double salts”? Green Chem. 16(4), 2051–2083 (2014)

    Article  Google Scholar 

  61. Niedermeyer, H., Hallett, J.P., Villar-Garcia, I.J., Hunt, P.A., Welton, T.: Mixtures of ionic liquids. Chem. Soc. Rev. 41(23), 7780–7802 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niki Vergadou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vergadou, N. (2017). Molecular Simulation of Ionic Liquids: Complex Dynamics and Structure. In: Lambropoulou, S., Theodorou, D., Stefaneas, P., Kauffman, L. (eds) Algebraic Modeling of Topological and Computational Structures and Applications. AlModTopCom 2015. Springer Proceedings in Mathematics & Statistics, vol 219. Springer, Cham. https://doi.org/10.1007/978-3-319-68103-0_14

Download citation

Publish with us

Policies and ethics