Skip to main content

Determining the Biological Properties of Biomaterials In Vivo

  • Chapter
  • First Online:
Biomaterials in Clinical Practice

Abstract

Biocompatibility, bioinertness and biofunctionality are prerequisites was that certain materials could be used in implantation. In vivo studies of biomaterials involves the assessing of overall biocompatibility of the newly synthesized biomaterials. In contact with organism, biomaterials represent foreign bodies and organism can react in various desirable and undesirable ways. As response to biomaterials, two types of hypersensitivity reactions are common, type I and type IV. Materials that are routinely used in dentistry can give rise to hypersensitivity reactions in both sensitised patients and members of the dental team. Hypersensitivity reactions to the endovascular prostheses are among the infrequent and unpredictable reactions that may lead to local or systemic complications. After implantation biomaterials initiate a host response which begins with blood-biomaterial interactions and provisional matrix formation and continues with acute/chronic inflammation, granulation tissue emergence, foreign body reaction, development of fibrous capsule and possible fibrosis. Macrophages are cells that regulate the host response to implanted biomaterial at several levels. Evaluation of the effect of the implant includes a large number of biological parameters e.g. thickness and vascularization of fibrous capsule, the number and size of inflammatory cells, cell infiltration in implant, degenerative and necrotic changes in the surrounding tissues, cell apoptosis, proliferation and differentiation, endothelialization, biodegradation, the thrombus formation, calcification. Effects of biomaterial at the site of implantation depend on its size, shape, surface and physicochemical characteristics. Ideal result of implantation would be complete restoration of normal tissue architecture and function after healing of injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas AK, Lichtman AHH (2010) Basic immunology updated edition: functions and disorders of the immune system. Elsevier Health Sciences

    Google Scholar 

  • Agrawal CM, Ray RB (2001) Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res 55(2):141–150

    Article  Google Scholar 

  • Ajduković Z, Najman S, Lj Đorđević et al (2005) Repair of bone tissue affected by osteoporosis with hydroxyapatite-poly-L-lactide (HAp-PLLA) with and without blood plasma. J Biomater Appl 20(2):179–190

    Article  Google Scholar 

  • Alberts B, Johnson A, Lewis J et al (2002) Molecular biology of the cell, 4th edn. Garland Science, New York. Available via http://www.ncbi.nlm.nih.gov/books/NBK26889/

  • Anderson J (1988) Inflammatory response to biomaterials. ASAIO Trans 34(2):101–107

    Article  Google Scholar 

  • Anderson J (1993) Mechanisms of inflammation and infection with implanted devices. Cardiovasc Pathol 2(Suppl. 1):33S–41S

    Article  Google Scholar 

  • Anderson J (2000) Multinucleated giant cells. Curr Opin Hematol 7(1):40–47

    Article  Google Scholar 

  • Anderson J (2001) Biological responses to materials. Annu Rev Mater Res 31:81–110

    Article  Google Scholar 

  • Anderson J (2008) Biocompatibility and bioresponse to biomaterials. In: Atala A, Lanza R, Thomson J, Nerem R (eds) Principles of regenerative medicine, 1st edn. Elsevier Academic Press, Burlington, pp 704–723

    Chapter  Google Scholar 

  • Anderson J (2013) Inflammation, wound healing and the foreign-body response. In: Ratner B, Hoffman A, Schoen F, Lemons J (eds) Biomaterials science: an introduction to materials in medicine, 3rd edn. Elsevier Academic Press, Waltham, pp 503–512

    Chapter  Google Scholar 

  • Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1(11):845–867

    Article  Google Scholar 

  • Anderson J, McNally A (2011) Biocompatibility of implants: lymphocyte/macrophage interactions. Semin Immunopathol 33(3):221–233

    Article  Google Scholar 

  • Anderson J, Patel J (2013) Biomaterial-dependent characteristics of the foreign body response and S. epidermidis biofilm interactions. In: Moriarty F, Zaat S, Busscher H (eds) Biomaterials associated infection: immunological aspects and antimicrobial strategies. Springer Science + Business Media, New York, pp 119–150

    Google Scholar 

  • Anderson J, Rodriguez A, Chang D (2008) Foreign body reaction to biomaterials. Semin Immunol 20(2):86–100

    Article  Google Scholar 

  • Asch E, Podack E (1990) Vitronectin binds to activated human platelets and plays a role in platelet aggregation. J Clin Invest 85(5):1372–1378

    Article  Google Scholar 

  • Ashraf MW (2012) Levels of heavy metals in popular cigarette brands and exposure to these metals via smoking. Sci World J. doi:10.1100/2012/729430

  • Bar-Shavit R, Kahn A, Fenton J 2nd et al (1983) Chemotactic response of monocytes to thrombin. J Cell Biol 96(1):282–285

    Article  Google Scholar 

  • Basko-Plluska JL, Thyssen JP, Schalock PC (2011) Cutaneous and systemic hypersensitivity reactions to metallic implants. Dermatitis 22(2):65–79

    Google Scholar 

  • Bizios R, Lai L, Fenton J 2nd et al (1986) Thrombin-induced chemotaxis and aggregation of neutrophils. J Cell Physiol 128(3):485–490

    Article  Google Scholar 

  • Borchers A, Teuber SS, Keen CL et al (2010) Food safety. Clin Rev Allerg Immunol 39(2):95–141

    Article  Google Scholar 

  • Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30:547–564

    Article  Google Scholar 

  • Brostoff J, Scadding GK, Male D et al (1991) Introduction to immune responses. In: Brostoff J, Scadding GK, Male D, Roitt IM (eds) Clinical immunology. Gower Medical Publishing, New York

    Google Scholar 

  • Cadosch D, Chan E, Gautschi OP et al (2009) Metal is not inert: role of metal ions released by biocorrosion in aseptic loosening—current concepts. J Biomed Mater Res A 91(4):1252–1262

    Article  Google Scholar 

  • Chung BY, Kim HO, Park CW et al (2010) Diagnostic usefulness of the serum-specific IgE, the skin prick test and the atopy patch test compared with that of the oral food challenge test. Ann Dermatol 22(4):404–411

    Article  Google Scholar 

  • Council of Europe (1999) Guide to the preparation, use and quality assurance of blood components, 5th edn. Council of Europe Publishing, Strasbourg

    Google Scholar 

  • Czarnobilska E, Obtułowicz K, Wsołek K (2007) Type IV of hypersensitivity and its subtypes. Przegl Lek 64(7–8):506–508

    Google Scholar 

  • Dasika UK, Kanter KR, Vincent R (2003) Nickel allergy to the percutaneous patent foramen ovale occluder and subsequent systemic nickel allergy. J Thorac Cardiovasc Surg 126(6):2112

    Article  Google Scholar 

  • Dee K, Puleo D, Bizios R (2003) An introduction to tissue-biomaterial interactions. Wiley, Hoboken, pp 127–147

    Google Scholar 

  • DeFife K, Jenney C, McNally A et al (1997) Interleukin-13 induces human monocyte/macrophage fusion and macrophage mannose receptor expression. J Immunol 158(7):3385–3390

    Google Scholar 

  • Douglas T, Pamula E, Hauk D et al (2009) Porous polymer/hydroxyapatite scaffolds: characterization and biocompatibility investigations. J Mater Sci Mater Med 20(9):1909–1915

    Article  Google Scholar 

  • Durucan C, Brown PW (2000) Calcium-deficient hydroxyapatite-PLGA composites: mechanical and microstructural investigation. J Biomed Mater Res 51:726–734

    Article  Google Scholar 

  • El-Warrak A, Olmstead M, Apelt D (2004a) An animal model for interface tissue formation in cemented hip replacements. Vet Surg 33(5):495–504

    Article  Google Scholar 

  • El-Warrak A, Olmstead M, Schneider R et al (2004b) An experimental animal model of aseptic loosening of hip prostheses in sheep to study early biochemical changes at the interface membrane. BMC Musculoskelet Disord 5:7

    Article  Google Scholar 

  • Fais S, Burgio VL, Silvestri M et al (1994) Multinucleated giant cells generation induced by interferon-gamma. Changes in the expression and distribution of the intercellular adhesion molecule-1 during macrophages fusion and multinucleated giant cell formation. Lab Invest 71(5):737–744

    Google Scholar 

  • Franz S, Rammelt S, Scharnweber D et al (2011) Immune responses to implants—a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 32(28):6692–6709

    Article  Google Scholar 

  • Fukahara K, Minami K, Reiss N et al (2003) Systemic allergic reaction to the percutaneous patent foramen ovale occluder. J Thorac Cardiovasc Surg 125(1):213–214

    Article  Google Scholar 

  • Gawaz M, Neumann F, Dickfeld T et al (1997) Vitronectin receptor (αvβ3) mediates platelet adhesion to the luminal aspect of endothelial cells. Implications for reperfusion in acute myocardial infarction. Circulation 96:1809–1818

    Article  Google Scholar 

  • Gawkrodger DJ (2005) Investigation of reactions to dental materials. Br J Dermatol 153(3):479–485

    Article  Google Scholar 

  • Gell PGH, Coombs RRA (1963) The classification of allergic reactions underlying disease. In: Coombs RRA, Gell PGH (eds) Clinical aspects of immunology. Blackwell Science, Philadelphia

    Google Scholar 

  • Ghanaati S, Barbeck M, Willershausen I et al (2013) Nanocrystalline hydroxyapatite bone substitute leads to sufficient bone tissue formation already after 3 months: histological and histomorphometrical analysis 3 and 6 months following human sinus cavity augmentation. Clin Implant Dent Relat Res 15:883–892

    Article  Google Scholar 

  • Gil-Albarova J, Lacleriga A, Barrios C et al (1992) Lymphocyte response to polymethylmethacrylate in loose total hip prostheses. J Bone Joint Surg Br 74(6):825–830

    Google Scholar 

  • Goon AT, Isaksson M, Zimerson E et al (2006) Contact allergy to (meth) acrylates in the dental series in southern Sweden: simultaneous positive patch test reaction patterns and possible screening allergens. Contact Dermat 55(4):219–226

    Article  Google Scholar 

  • Granchi D, Cenni E, Trisolino G et al (2006) Sensitivity to implant materials in patients undergoing total hip replacement. J Biomed Mater Res B 77(2):257–264

    Article  Google Scholar 

  • Granchi D, Cenni E, Giunti A et al (2012) Metal hypersensitivity testing in patients undergoing joint replacement a systematic review. J Bone Joint Surg Br 94(8):1126–1134

    Article  Google Scholar 

  • Häkkinen L, Larjava H, Koivisto L (2012) Granulation tissue formation and remodeling. Endod Topics 24(1):94–129

    Article  Google Scholar 

  • Hallab N (2001) Metal sensitivity in patients with orthopedic implants. Jcr-J Clin Rheumatol 7(4):215–218

    Article  Google Scholar 

  • Hallab NJ, Jacobs JJ (2009) Biologic effects of implant debris. Bull NYU Hosp Jt Dis 67(2):182

    Google Scholar 

  • Hallab N, Jacobs JJ, Black J (2000) Hypersensitivity to metallic biomaterials: a review of leukocyte migration inhibition assays. Biomaterials 21(13):1301–1314

    Article  Google Scholar 

  • Hallab N, Merritt K, Jacobs JJ (2001) Metal sensitivity in patients with orthopaedic implants. J Bone Joint Surg Am 83(3):428–437

    Article  Google Scholar 

  • Hallab NJ, Caicedo M, Finnegan A et al (2008) Th1 type lymphocyte reactivity to metals in patients with total hip arthroplasty. J Orthop Surg Res 3(1):6

    Article  Google Scholar 

  • Hamano H, Uoshima K, Miao WP et al (1998) Investigation of metal allergy to constituent elements of intraoral restoration materials. Kokubyo Gakkai zasshi. J Stomatol Soc Jpn 65(1):93–99

    Article  Google Scholar 

  • Heinzerling L, Mari A, Bergmann KC et al (2013) The skin prick test-European standards. Clin Transl Allergy 3(1):3

    Article  Google Scholar 

  • Hill DJ, Heine RG, Hosking CS (2004) The diagnostic value of skin prick testing in children with food allergy. Pediat Allergy Immnol-Uk 15(5):435–441

    Article  Google Scholar 

  • Honari G, Ellis SG, Wilkoff BL et al (2008) Hypersensitivity reactions associated with endovascular devices. Contact Dermat 59(1):7–22

    Article  Google Scholar 

  • Hu W, Eaton J, Ugarova T et al (2001) Molecular basis of biomaterial-mediated foreign body reactions. Blood 98(4):1231–1238

    Article  Google Scholar 

  • Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543

    Article  Google Scholar 

  • Hutmacher DW, Schantz JT, Lam CX et al (2007) State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med 1(4):245–260

    Article  Google Scholar 

  • Ignjatovic N, Savic V, Najman S et al (2001) A study of HAp/PLLA composite as a substitute for bone powder, using FT-IR spectroscopy. Biomaterials 22:571–575

    Article  Google Scholar 

  • Ignjatovic NL, Ajdukovic ZR, Savic VP et al (2013) Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones. J Mater Sci-Mater Med 24(2):343–354

    Article  Google Scholar 

  • ISO 10993: Biological evaluation of medical devices

    Google Scholar 

  • Janeway CA Jr, Travers P, Walport M et al (2001) Immunobiology: the immune system in health and disease, 5th edn. Garland Science, New York

    Google Scholar 

  • Janićijević J, Najman S, Ignjatović N et al (2008) Nanomaterial NP-CP/DLPLG as potentional tissue graft in osteoreparation in combination with bone marrow cells on subcutaneous implantation model. Hem Ind 62(3):205–210

    Article  Google Scholar 

  • Jennewein C, Tran N, Paulus P et al (2011) Novel aspects of fibrin(ogen) fragments during inflammation. Mol Med 17(5–6):568–573

    Google Scholar 

  • Jokanović V, Izvonar D, Dramićanin MD et al (2006) Hydrothermal synthesis and nanostructure of carbonated calcium hydroxyapatite. J Mater Sci Mater Med 17:539–546

    Article  Google Scholar 

  • Jokanović V, Čolović B, Marković D et al (2016a) Extraordinary biological properties of a new calcium hydroxyapatite/poly(lactide-co-glycolide)-based scaffold confirmed by in vivo investigation. Biomed Tech (Berl). doi:10.1515/bmt-2015-0164

  • Jokanović V, Čolović B, Marković D et al (2016b) In vivo investigation of ALBO-OS scaffold based on hydroxyapatite and PLGA. J Nanomater. doi:10.1155/2016/3948768

  • Jones K (2008) Effects of biomaterial-induced inflammation on fibrosis and rejection. Semin Immunol 20(2):130–136

    Article  Google Scholar 

  • Kaji Y, Ikeda K, Ikeda T et al (2000) IL-4, but not vitamin D(3), induces monoblastic cell line UG3 to differentiate into multinucleated giant cells on osteoclast lineage. J Cell Physiol 182(2):214–221

    Article  Google Scholar 

  • Kanerva L, Estlander T, Jolanki R (1995) Dental problems. In: Guind JD (ed) Practical contact dermatitis. Mc Graw-Hill, New York, pp 397–432

    Google Scholar 

  • Kang Y, Scully A, Young DA et al (2011) Enhanced mechanical performance and biological evaluation of a PLGA coated ®-TCP composite scaffold for load-bearing applications. Eur Polym J 47:1569–1577

    Article  Google Scholar 

  • Khamaysi Z, Bergman R, Weltfriend S (2006) Positive patch test reactions to allergens of the dental series and the relation to the clinical presentations. Contact Dermat 55(4):216–218

    Article  Google Scholar 

  • Kokubo T (1996) Formation of biologically active bone-like apatite on metals and polymers by a biomimetic process. Thermochim Acta 280–281:479–490

    Article  Google Scholar 

  • Konttinen Y, Zhao D, Beklen A et al (2005) The microenvironment around total hip replacement prostheses. Clin Orthop Relat Res 430:28–38

    Article  Google Scholar 

  • Lee M, Ducheyne P, Lynch L et al (2006) Effect of biomaterial surface properties on fibronectin-α 5 β 1 integrin interaction and cellular attachment. Biomaterials 27(9):1907–1916

    Article  Google Scholar 

  • Li C, Vepari C, Jin HJ et al (2006) Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27:3115–3124

    Article  Google Scholar 

  • Li JJ, Kaplan DL, Zreiqat H (2014) Scaffold-based regeneration of skeletal tissues to meet clinical challenges. J Mater Chem B 2:7272–7306

    Article  Google Scholar 

  • Lin P, Hirko M, von Fraunhofer J et al (1997) Wound healing and inflammatory response to biomaterials. In: Chu J, von Fraunhofer A, Greisler P (eds) Wound closure biomaterials and devices. CRC Press LLC, Florida, pp 7–19

    Google Scholar 

  • Luttikhuizen D, Harmsen M, Van Luyn M (2006) Cellular and molecular dynamics in the foreign body reaction. Tissue Eng 12(7):1955–1970

    Article  Google Scholar 

  • Lygre H (2002) Prosthodontic biomaterials and adverse reactions: a critical review of the clinical and research literature. Acta Odontol Scand 60(1):1–9

    Article  Google Scholar 

  • Mallo-Pérez L, Díaz-Donado C (2003) Intraoral contact allergy to materials used in dental practice. A critical review. Medicina oral: organo oficial de la Sociedad Espanola de Medicina Oral y de la Academia Iberoamericana de Patologia y Medicina Bucal 8(5):334–347

    Google Scholar 

  • Mitić ŽJ, Najman SJ, Cakić MD et al (2014) Spectroscopic characterization of bone tissue of experimental animals after glucocorticoid treatment and recovery period. J Mol Struct 1074:315–320

    Article  Google Scholar 

  • Morais J, Papadimitrakopoulos F, Burgess D (2010) Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS J 12(2):188–196

    Article  Google Scholar 

  • Najdanović J, Cvetković V, Stojanović S et al (2015) The influence of adipose-derived stem cells induced into endothelial cells on ectopic vasculogenesis and osteogenesis. Cell Mol Bioeng 8(4):577–590

    Article  Google Scholar 

  • Najman S, Đorđević LJ, Savic V et al (2003) Changes of HAp/PLLA biocompozites and tissue reaction after subcutaneous implantation. Facta Univ Ser Med Biol 10(3):131–134

    Google Scholar 

  • Najman S, Savić V, Lj Đorđević et al (2004) Biological evaluation of hydroxyapatite/poly-L-lactide (HAp/PLLA) composite biomaterials with poly-L-lactide of different molecular weights intraperitoneally implanted into mice. Bio-Med Mater Eng 14(1):61–70

    Google Scholar 

  • National Institute of Health (1977) Evaluation of hemodialyzers and dialysis membranes. Hemolysis-Rabbit Blood, DHEW Publication 77–1294, Bethesda, MD

    Google Scholar 

  • Nebeker JR, Virmani R, Bennett CL et al (2006) Hypersensitivity cases associated with drug-eluting coronary stents: a review of available cases from the Research on Adverse Drug Events and Reports (RADAR) project. J Am Coll Cardiol 47(1):175–181

    Article  Google Scholar 

  • Ngiam M, Liao S, Patil AJ et al (2009) The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behaviour for bone tissue engineering. Bone 45:4–16

    Article  Google Scholar 

  • Nowak G, Olejek A (2004) Biological and molecular aspects of wound healing. Prakt Gyn 12:2–30

    Google Scholar 

  • Nuss K, von Rechenberg B (2008) Biocompatibility issues with modern implants in bone—a review for clinical. Open Orthop J 2:66–78

    Article  Google Scholar 

  • Ohgushi H, Goldberg VM, Caplan AI (1989) Repair of bone defects with marrow cells and porous ceramic. Experiments in rats. Acta Orthop Scand 60(3):334–339

    Article  Google Scholar 

  • Olczyk P, Mencner Ł, Komosinska-Vassev K (2014) The role of the extracellular matrix components in cutaneous wound healing. BioMed Res Int. Article ID 747584, 8 p

    Google Scholar 

  • Olivier V, Faucheux N, Hardouin P (2004) Biomaterial challenges and approaches to stem cell use in bone reconstructive surgery. Drug Discov Today 9(18):803–811

    Article  Google Scholar 

  • Powanda MC, Moyer ED (1981) Plasma proteins and wound healing. Surg Gynecol Obstet 153(5):749–755

    Google Scholar 

  • Primeau MN, Adkinson NF Jr (2001) Recent advances in the diagnosis of drug allergy. Curr Opin Allergy Clin Immunol 1(4):337–341

    Article  Google Scholar 

  • Pumhirun P, Jane-Trakoonroj S, Wasuwat P (2000) Comparison of in vitro assay for specific IgE and skin prick test with intradermal test in patients with allergic rhinitis. Asian Pac J Allergy 18(3):157–160

    Google Scholar 

  • Rajan TV (2003) The Gell-Coombs classification of hypersensitivity reactions: a re-interpretation. Trends Immunol 24(7):376–379

    Article  Google Scholar 

  • Ratner BD, Hoffman AS, Schoen FJ et al (1997) Biomaterials science: an introduction to materials in medicine. Elsevier Academic Press, San Diego

    Book  Google Scholar 

  • Repo H, Kostiala AA, Kosunen TU (1980) Cellular hypersensitivity to tuberculin in BCG-revaccinated persons studied by skin reactivity, leucocyte migration inhibition and lymphocyte proliferation. Clin Exp Immunol 39(2):442–448

    Google Scholar 

  • Riches D (1988) Macrophage involvement in wound repair, remodeling, and fibrosis. In: Clark R, Henson P (eds) The molecular and cellular biology of wound repair. Plenum Press, New York, pp 213–239

    Chapter  Google Scholar 

  • Ripamonti U (1993) Delivery systems for bone morphogenetic proteins. A summary of experimental studies in primate models. Ann Chir Gynaecol Suppl 207:13–24

    Google Scholar 

  • Robitaille R, Dusseault J, Henley N et al (2005) Inflammatory response to peritoneal implantation of alginate-poly-l-lysine microcapsules. Biomaterials 26(19):4119–4127

    Article  Google Scholar 

  • Schalock PC, Menné T, Johansen JD et al (2012) Hypersensitivity reactions to metallic implants–diagnostic algorithm and suggested patch test series for clinical use. Contact Dermat 66(1):4–19

    Article  Google Scholar 

  • Shapiro F (2008) Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur Cell Mater 15:53–76

    Article  Google Scholar 

  • Shiu H, Goss B, Lutton C et al (2014) Formation of blood clot on biomaterial implants influences bone healing. Tissue Eng B Rev 20(6):697–712

    Article  Google Scholar 

  • Stejskal VD, Forsbeck M, Cederbrant KE et al (1996) Mercury-specific lymphocytes: an indication of mercury allergy in man. J Clin Immunol 16(1):31–40

    Article  Google Scholar 

  • Szaba FM, Smiley ST (2002) Roles for thrombin and fibrin (ogen) in cytokine/chemokine production and macrophage adhesion in vivo. Blood 99(3):1053–1059

    Article  Google Scholar 

  • Tang L, Eaton JW (1993) Fibrin (ogen) mediates acute inflammatory responses to biomaterials. J Exp Med 178(6):2147–2156

    Article  Google Scholar 

  • Tang L, Jennings TA, Eaton JW (1998) Mast cells mediate acute inflammatory responses to implanted biomaterials. Proc Natl Acad Sci U S A 95(15):8841–8846

    Article  Google Scholar 

  • Ten RM, Klein JS, Frigas E (1995) Allergy skin testing. Mayo Clin Proc 70(8):783–784

    Article  Google Scholar 

  • Teow Y, Asharani PV, Hande MP et al (2011) Health impact and safety of engineered nanomaterials. Chem Commun 47(25):7025–7038

    Article  Google Scholar 

  • Thomas P, Summer B, Sander CA et al (2000) Intolerance of osteosynthesis material: evidence of dichromate contact allergy with concomitant oligoclonal T-cell infiltrate and TH1-type cytokine expression in the peri-implantar tissue. Allergy 55(10):969–972

    Article  Google Scholar 

  • Thomas M, Arora A, Katti DS (2014) Surface hydrophilicity of PLGA fibers governs in vitro mineralization and osteogenic differentiation. Mater Sci Eng C 45:320–332

    Article  Google Scholar 

  • Thyssen JP, Menné T (2010) Metal allergys—a review on exposures, penetration, genetics, prevalence, and clinical implications. Chem Res Toxicol 23(2):309–318

    Google Scholar 

  • Thyssen JP, Menné T, Schalock PC et al (2011) Pragmatic approach to the clinical work-up of patients with putative allergic disease to metallic orthopaedic implants before and after surgery. Br J Dermatol 164(3):473–478

    Google Scholar 

  • Turbill P, Beugeling T, Poot A (1996) Proteins involved in the Vroman effect during exposure of human blood plasma to glass and polyethylene. Biomaterials 17(13):1279–1287

    Article  Google Scholar 

  • Valentine-Thon E, Ilsemann Sandkamp M (2007) A novel lymphocyte transformation test (LTT-MELISA®) for Lyme borreliosis. Diagn Microbiol Infect Dis 57(1):27–34

    Article  Google Scholar 

  • Valentine-Thon E, Schiwara HW (2003) Validity of MELISA® for metal sensitivity testing. Neuroendocrinol Lett 24(1/2):57–64

    Google Scholar 

  • Valentine-Thon E, Muller K, Guzzi G et al (2006) LTT-MELISA (R) is clinically relevant for detecting and monitoring metal sensitivity. Neuroendocrinol Lett 27(1):17–24

    Google Scholar 

  • Van der Zee JS, De Groot H, Van Swieten P et al (1988) Discrepancies between the skin test and IgE antibody assays: study of histamine release, complement activation in vitro, and occurrence of allergen-specific IgG. J Allergy Clin Immunol 82(2):270–281

    Article  Google Scholar 

  • Vasiljevic P, Najman S, Lj Djordjevic et al (2009) Ectopic osteogenesis and hematopoiesis after implantantion of bone marrow cells seeded on Hap/PLLA scaffold. Hemijska Industrija 63(4):301–307

    Article  Google Scholar 

  • Vasiljevic P, Najman S, Vukelic M et al (2013) Potential of HAp composite scaffolds and bone marrow stem cells in bone repair. In: Spasic M (ed) Proceedings the 3rd conference of the serbian biochemical society, titled “Roots and Branches of Biochemistry”, University of Belgrade

    Google Scholar 

  • Vukelić M, Mitić Ž, Miljković M et al (2011) Interaction of biomaterials containing calcium hydroxyapatite/poly-l-lactide with the simulated body fluid. Acta Med Median 50(4):35–39

    Article  Google Scholar 

  • Vukelić M, Mitić Ž, Miljkovic M et al (2012) Apatite formation on nanomaterial calcium phosphate/poly-DL-lactide-co-glycolide in simulated body fluid. J Appl Biomater Funct Mater 10(1):43–48

    Google Scholar 

  • Wahl SM, Wong H, McCartney-Francis N (1989) Role of growth factors in inflammation and repair. J Cell Biochem 40(2):193–199

    Article  Google Scholar 

  • Willert HG, Buchhorn GH, Fayyazi A et al (2005) Metal-on-metal bearings and hypersensitivity in patients with artificial hip joints. J Bone Joint Surg Am 87(1):28–36

    Google Scholar 

  • Wilson C, Clegg R, Leavesley D et al (2005) Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng 11(1–2):1–18

    Article  Google Scholar 

  • Wynn TA, Barron L (2010) Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis 30(3):245–257

    Article  Google Scholar 

  • Yanagi T, Shimizu T, Abe R et al. (2005) Zinc dental fillings and palmoplantar pustulosis. Lancet 366(9490):1050

    Google Scholar 

  • Yaszemski MJ, Payn RG, Hayes WC et al (1996) Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials 17(2):175–185

    Article  Google Scholar 

  • Yu K, Mei Y, Hadjesfandiari N et al (2014) Engineering biomaterials surfaces to modulate the host response. Colloids Surf B Biointerfaces 124:69–79

    Article  Google Scholar 

  • Zdolsek J, Eaton J, Tang L (2007) Histamine release and fibrinogen adsorption mediate acute inflammatory responses to biomaterial implants in humans. J Transl Med 5:31

    Article  Google Scholar 

  • Živković J, Najman S, Vukelić M et al (2015) Osteogenic effect of inflammatory macrophages loaded onto mineral bone substitute in subcutaneous implants. Arch Biol Sci 67(1):173–186

    Article  Google Scholar 

Download references

Acknowledgements

The printing of this article is financed by EU project 543898-TEMPUS-1-2013-1-ES-TEMPUS-JPHES. Part of the scientific study are supported by Ministry of Education, Science and Technological Development, Serbia, as part of project No. III 41017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stevo Najman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Vasiljević, P.J., Živković, J., Vukelić-Nikolić, M., Najman, S. (2018). Determining the Biological Properties of Biomaterials In Vivo. In: Zivic, F., Affatato, S., Trajanovic, M., Schnabelrauch, M., Grujovic, N., Choy, K. (eds) Biomaterials in Clinical Practice . Springer, Cham. https://doi.org/10.1007/978-3-319-68025-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68025-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68024-8

  • Online ISBN: 978-3-319-68025-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics