Skip to main content

Chemical Bulk Properties of Biomaterials

  • Chapter
  • First Online:
Biomaterials in Clinical Practice

Abstract

Biomaterials are made from different classes of known materials including metals and alloys, ceramics, glasses, as well as natural and synthetic polymers. This great variety of materials is a result of the different application profiles, biomaterials normally have to fulfil in the body. The basis for the specific properties of a distinct biomaterial is its composition and structure at an atomic and molecular level determining the chemical nature and finally the behaviour of these materials in a living organism. In this chapter it is aimed to introduce the fundamental concepts describing the atomic bondings and the corresponding molecular structures of the main classes of material. Main correlations between these molecular structures of materials and their resulting chemical behaviour will be discussed to better understand and predict the properties of those materials with regard to their use in contact with the living matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walters P (2002) Molecular biology of the cell. Garland Science, New York

    Google Scholar 

  • Angelini E, Caputo A, Zucchi F (2002) Degradation processes on metallic surfaces. In: Barbucci R (ed) Integrated biomaterials science. Kluwer Academic/Plenum Press, New York, pp 297–324

    Chapter  Google Scholar 

  • FW Billmeyer Jr (1984) Textbook of polymer science. Wiley, New York

    Google Scholar 

  • Brauer DS (2015) Bioactive glasses—structure and properties. Angew Chem Int Ed 54:4160–4181

    Article  Google Scholar 

  • Brunski JB (2004) Metals. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) An introduction to materials in medicine. Elsevier, San Diego, pp 137–153

    Google Scholar 

  • Carrodeguas RG, De Aza S (2011) α-Tricalcium phosphate: synthesis, properties and biomedical applications. Acta Biomaterialia 3536–3546

    Google Scholar 

  • Cigada, A Chiesa R, Pinasco MR, Hisatsune K (2002) Metallic materials. In: Barbucci R (ed) Integrated biomaterials science, Kluwer Academic/Plenum Press, New York, pp 257–296

    Google Scholar 

  • Chen Y, Xu Z, Smith C, Sankar J (2014) Recent advances on the development of magnesium alloys for biodegradable implants. Acta biomaterialia 10(11):4561–4573

    Article  Google Scholar 

  • Chevalier J (2006) What future for zirconia as a biomaterial? Biomaterials 27:535–543

    Article  Google Scholar 

  • Cooke FW (2004) Bulk properties of materials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) An introduction to materials in medicine. Elsevier, San Diego, pp 23–32

    Google Scholar 

  • Cooper SL, Visser SA, Hergenrother RW, Lamba NMK (2004) Polymers. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) An introduction to materials in medicine. Elsevier, San Diego, pp 67–79

    Google Scholar 

  • De Aza AH, Chevalier J, Fantozzi G, Schehl M, Torrecillas R (2002) Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials 23:937–945

    Article  Google Scholar 

  • Dee KC, Puleo DA, Bizios R (2002) An introduction to biomaterial interactions. Wiley-Lyss, Hoboken

    Book  Google Scholar 

  • Dorozhkin SV (2011) Biocomposites and hybrid biomaterials based on calcium orthophosphates. Biomatter 2011, 1, 1–53

    Google Scholar 

  • Gerhardt L-C, Boccaccini AR (2010) Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials 3:3867–3910

    Article  Google Scholar 

  • Doppalapudi S, Katiyar S, Domb AJ, Khan W (2015) Biodegradable natural polymers. In: Puoci F (ed) Advanced polymers in medicine. Springer, Cham, pp 32–66

    Google Scholar 

  • Dorozhkin SV (2012) Biphasic, triphasic and multiphasic calcium orthophosphates. Acta Biomater 8:963–977

    Article  Google Scholar 

  • Dräger G, Krause A, Möller L, Dumitriu S (2011) Carbohydrates. In: Lendlein A, Sisson A (eds) Handbook of biodegradable polymers. Wiley-VCH, Weinheim, pp 155–193

    Chapter  Google Scholar 

  • Gadow R, Kern F (2010) Novel zirconia–alumina nanocomposites combining high strength and toughness. Adv Eng Mater 12:1220–1223

    Article  Google Scholar 

  • Gagner JE, Kim W, Chaikof EL (2014) Designing protein-based biomaterials for medical applications. Acta Biomater 10:1542–1557

    Article  Google Scholar 

  • Godbey WT, Wu KK, Mikos AG (1999) Poly(ethylenimine) and its role in gene delivery. J Controlled Release 60:149–160

    Article  Google Scholar 

  • Göpferich A (1997) Mechanisms of polymer degradation and elimination. In: Domb AJ, Kost J, Wiseman DM (eds) Handbook of biodegradable polymers. OPA, Amsterdam, pp 451–471

    Google Scholar 

  • Gray E, Hogwood J, Mulloy B (2012) The anticoagulant and antuthrombotic mechanisms of heparin. In: Lever R, Mulloy B, Page CP (eds) Heparin-a century of progress. Handbook of experimental pharmacology, vol 207. Springer, Berlin, pp 43–61

    Google Scholar 

  • Hench LL (1988) Bioactive ceramics. Ann N Y Acad Sci 523:54–71

    Article  Google Scholar 

  • Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510

    Article  Google Scholar 

  • Hench LL (1999) Bioactive glasses and glass-ceramics. Mat Sci Forum 293:27–64

    Article  Google Scholar 

  • Hench LL, Best S (2004) Ceramics, glasses, and glass-ceramics. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) An introduction to materials in medicine. Elsevier, San Diego, pp 153–170

    Google Scholar 

  • Hornberger H, Virtanen S, Boccaccini AR (2012) Biomedical coatings on magnesium alloys—a review. Acta Biomater 8:2442–2455

    Article  Google Scholar 

  • Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomaterials 9:4457–4486

    Article  Google Scholar 

  • Kaplan DL (1989) Introduction to biopolymers from renewable resources. In: Kaplan DL (ed) biopolymers from renewable resources. Springer, Berlin, pp 1–29

    Google Scholar 

  • Keenan TR (1997) Gelatin. In: Domb AJ, Kost J, Wiseman DM (eds) Handbook of biodegradable polymers. OPA, Amsterdam, pp 307–317

    Google Scholar 

  • Kelly JR, Denry I (2008) Stabilized zirconia as a structural ceramic: an overview. Dent Mater 24:289–298

    Article  Google Scholar 

  • Kenawy E-R, Worley SD, Broughton R (2007) The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromol 8:1359–1384

    Article  Google Scholar 

  • Khan W, Yadav D, Domb AJ, Kumar N (2011) Collagen. In: Domb AJ, Kumar N, Ezra A (eds) Biodegradable polymers in clinical use and clinical development. Wiley, Hoboken, pp 61–89

    Google Scholar 

  • Krajewski A, Ravaglioli A (2002) Bioceramics and biological glasses. In: Barbucci R (ed) Integrated biomaterials science. Kluwer Academic/Plenum Press, New York, pp 189–254

    Chapter  Google Scholar 

  • Krueger O (2004) Kunststoffe. In: Bargel H-J, Schulze G (eds) Werkstoffkunde. Springer, Berlin, pp 304–335

    Google Scholar 

  • Lee HB, Khang G, Lee JH (2003) Polymeric biomaterials. In: Park JB, Bronzino JD (eds) Biomaterials: principles and applications. CRS Press, Boca Raton, pp 55–77

    Google Scholar 

  • Liu B, Lun DX (2012) Current application of β-tricalcium phosphate composites in orthopaedics. Orthopaedic Surg 4:139–144

    Article  Google Scholar 

  • Marek M (2009) Metal corrosion. In: Narayan R (ed) Biomedical materials. Springer, New York, pp 155–181

    Chapter  Google Scholar 

  • Niinomi M, Nakai M, Hieda J (2012) Development of new metallic alloys for biomedical applications. Acta Biomater 8:3888–3903

    Article  Google Scholar 

  • Omidian H, Park K (2010) Introduction to hydrogels. In: Ottenbrite RM (ed) Biomedical applications of hydrogels handbook. Springer, New York, pp 1–16

    Google Scholar 

  • Parisi OI, Curcio M, Puoci F (2015) Polymer chemistry and synthetic polymers. In: Puoci F (ed) Advanced polymers in medicine. Springer, Cham, pp 1–31

    Google Scholar 

  • Park J (2008) Bioceramics: Properties, characterizations, and applications. Springer, New York

    Google Scholar 

  • Park JB, Kim YK (2003) Metallic biomaterials. In: Park JB, Bronzino JD (eds) Biomaterials: principles and applications. CRC Press, Boca Raton, pp 1–20

    Google Scholar 

  • Piconi C, Maccauro G, Muratori F, Brach Del Prever E (2003) Alumina and zirconia ceramics in joint replacements. J Appl Biomat Biomech 1:19–32

    Google Scholar 

  • Pilliar RM (2009) Metallic biomaterials. In: Narayan R (ed) Biomedical materials. Springer, New York, pp 41–81

    Chapter  Google Scholar 

  • Pourbaix M (1984) Electrochemical corrosion of metallic biomaterials. Biomaterials 5:122–134

    Article  Google Scholar 

  • Reifenrath J, Bormann D, Meyer-Lindenberg A (2011) Magnesium alloys as promising degradable implant materials in orthopaedic research. In: Czerwinski F (ed) Magnesium alloys—corrosion and surface treatments. InTech, Rijeka, pp 93–108

    Google Scholar 

  • Ren F, Leng Y, Xin R, Ge X (2010) Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite. Acta Biomater 6:2787–2796

    Article  Google Scholar 

  • Sadat-Shojai M, Khorasani M-T, Dinpanah-Khoshdargi E, Jamshidi A (2013) Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater 9:7591–7621

    Article  Google Scholar 

  • Schnabelrauch M, Scharnweber D, Schiller J (2013) Sulfated glycosaminoglycans as promising artificial extracellular matrix components to improve the regeneration of tissues. Curr Med Chem 20:2501–2523

    Article  Google Scholar 

  • Sewald N, Jakubke H-D (2002) Peptides: Chemistry and biology. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Silver FH, Garg AT (1997) Collagen: characterization, processing and medical applications. In: Domb AJ, Kost J, Wiseman DM (eds) Handbook of biodegradable polymers. OPA, Amsterdam, pp 319–346

    Google Scholar 

  • Srichana T, Domb AJ (2009) Polymeric biomaterials. In: Narayan R (ed) Biomedical materials. Springer, New York, pp 83–119

    Chapter  Google Scholar 

  • Tsuji H (2010) Hydrolytic degradation. In: Auras R, Lim L-T, Tsuji H (eds) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley, Hoboken, pp 345–381

    Google Scholar 

  • Turner IG (2009) Ceramics and glasses. In: Narayan R (ed) Biomedical materials. Springer, New York, pp 3–39

    Chapter  Google Scholar 

  • Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromol 12:1387–1408

    Article  Google Scholar 

  • Virtanen S (2008) Corrosion of biomedical implant materials. Corrosion of biomedical implant materials 26:147–171

    Google Scholar 

  • Vogel W, Höland W (1987) The development of bioglass ceramics for medical applications. Angew Chem Int Ed 26:527–544

    Article  Google Scholar 

  • Vogler EA (2004) Role of water in biomaterials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) An introduction to materials in medicine. Elsevier, San Diego, pp 59–65

    Google Scholar 

  • Volpi N (2006) Therapeutic applications of glycosaminoglycans. Curr Med Chem 13:1799–1810

    Article  Google Scholar 

  • Weisel JW, Cederholm-Williams SA (1997) Fibrinogen and fibrin: characterization, processing and medical applications. In: Domb AJ, Kost J, Wiseman DM (eds) Handbook of biodegradable polymers. OPA, Amsterdam, pp 347–365

    Google Scholar 

  • Williams DF, Williams RL (2004) Degradative effects of the biological environment on metals and ceramics. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) An introduction to materials in medicine. Elsevier, San Diego, pp 430–439

    Google Scholar 

  • Wilson J, Pigott GH, Schoen FJ, Hench LL (1981) Toxicology and biocompatibility of bioglasses. J Biomed Mater Res 15:805–817

    Article  Google Scholar 

  • Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, Feyerabend F (2008) Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci 12:63–72

    Article  Google Scholar 

  • Yannas IV (2004) Natural materials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) An introduction to materials in medicine. Elsevier, San Diego, pp 127–137

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Schnabelrauch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Schnabelrauch, M. (2018). Chemical Bulk Properties of Biomaterials. In: Zivic, F., Affatato, S., Trajanovic, M., Schnabelrauch, M., Grujovic, N., Choy, K. (eds) Biomaterials in Clinical Practice . Springer, Cham. https://doi.org/10.1007/978-3-319-68025-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68025-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68024-8

  • Online ISBN: 978-3-319-68025-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics