Skip to main content

Expansion of Arthropod Herbivory in Late Triassic South Africa: The Molteno Biota, Aasvoëlberg 411 Site and Developmental Biology of a Gall

  • Chapter
  • First Online:
The Late Triassic World

Part of the book series: Topics in Geobiology ((TGBI,volume 46))

Abstract

The Carnian Aasvoëlberg 411 (Aas411) site of the Molteno Formation in South Africa provides exceptional data for understanding how plants, their arthropod herbivores and interactions responded to the P-Tr ecological crisis approximately 18 million years earlier. Our study lists six consequences stemming from the P-Tr event. First, Aas411 was one of the most herbivorized of Molteno’s 106 sites, consisting of 20,358 plant specimens represented by 111 plant form-taxa that includes 14 whole-plant taxa (WPT); the insect damage consists of 11 functional feeding groups (FFGs), 44 damage types (DTs) and 1127 herbivorized specimens for an herbivory value of 5.54%. Second, the seven most herbivorized hosts, in decreasing importance, were the conifer Heidiphyllum elongatum; corystosperm Dicroidium crassinervis; ginkgophyte Sphenobaiera schenckii, peltasperms Lepidopteris stormbergensis and L. africana and horsetail Zonulamites viridensis. Third, generalized feeding damage and 11 host-specialized associations were present that targeted 39 of 111 plant taxa. Fourth, the Heidiphyllum elongatum WPT was most herbivorized, harboring an extensive herbivore component community containing 81.8% of FFGs, 63.6% of DT categories, 40.9% of DT occurrences, and 36.4% of specialized interactions at the site. Fifth, eriophyioid gall DT70 was host-specialized on Dicroidium crassinervis, where it constitutes 70.1% of all Molteno DT70 occurrences and revealing a distinctive developmental ontogeny. Sixth, herbivory levels significantly surpassed those of the Late Permian.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adami-Rodrigues K, Iannuzzi R, Pinto ID (2004) Permian plant–insect interactions from a Gondwana flora of Southern Brazil. Foss Strat 51:106–125

    Google Scholar 

  • Adami-Rodrigues K, Souza PA, Iannuzzi R, Pinto ID (2004) Herbivoria em floras Gonduânicas do Neopaleózoico do Rio Grande do Sul: análise quantitativa. Rev Brasil Paleontol 7:93–202

    Article  Google Scholar 

  • Alford DV (1991) A colour atlas of pests of ornamental trees, shrubs and flowers. Wolfe Publishing, London, p 448

    Google Scholar 

  • van Amerom HWJ (1973) Gibt es Cecidien im Karbon bei Calamiten und Asterophylliten? In: Josten KH (ed) Compte Rendu Septième Congrès International de Stratigraphie et de Géologie du Carbonifère. Geologisches Landesamt Nordrhein-Westfalen, Krefeld, Germany, pp 63–83

    Google Scholar 

  • Ananthakrishnan TN, Raman A (1989) Thrips and Gall dynamics. Leiden, Brill, p 120

    Google Scholar 

  • Anderson JM, Anderson HM (1983) Palaeoflora of Southern Africa Molteno Formation (Triassic). Volume 1: part 1. Introduction/part 2. Dicroidium. Balkema, Rotterdam, p 227

    Google Scholar 

  • Anderson JM, Anderson HM (1985) Palaeoflora of Southern Africa: prodromus of South African megafloras, Devonian to Lower Cretaceous. Balkema, Rotterdam, p 423

    Google Scholar 

  • Anderson JM, Anderson HM (1989) Palaeoflora of Southern Africa Molteno Formation (Triassic). Volume 2: Gymnosperms (Dicroidium). Balkema, Rotterdam, p 567

    Google Scholar 

  • Anderson JM, Anderson HM (1993) Terrestrial flora and fauna of the Gondwana Triassic: Part 2—co-evolution. The Nonmarine Triassic: New Mexico Nat Hist Sci Bull 3:13–25

    Google Scholar 

  • Anderson JM, Anderson HM (2003) Heyday of the gymnosperms: systematics and biodiversity of the Late Triassic Molteno fructifications. Strelitzia 15:1–398

    Google Scholar 

  • Anderson HM, Anderson JM (2008) Molteno ferns: Late Triassic biodiversity in Southern Africa. Strelitzia 21:1–258

    Google Scholar 

  • Anderson HM, Anderson JM (2017) Molteno sphenophytes: Late Triassic biodiversity in Southern Africa. Evol Stud Inst Monogr Ser 1:1–191. pls 180

    Google Scholar 

  • Anderson JM, Anderson HM, Archangelsky S, Bamford M, Chandra S, Dettmann M, Hill R, McLoughlin S, Rösler O (1999) Patterns of Gondwana plant colonization and diversification. J Afr Earth Sci 145:145–167

    Article  Google Scholar 

  • Anderson JM, Anderson HM, Cleal CJ (2007) Brief history of the gymnosperms: classification, biodiversity, phytogeography and ecology. Strelitzia 20:1–280

    Google Scholar 

  • Anderson JM, Anderson HM, Cruickshank ARI (1998) Late Triassic ecosystems of the Molteno/Lower Elliott Biome of southern Africa. Palaeontology 41:387–421

    Google Scholar 

  • Anderson JM, Anderson HM, Fatti P, Sichel H (1996) The Triassic explosion (?): a statistical model for extrapolating biodiversity based on the terrestrial Molteno Formation. Paleobiology 22:318–328

    Article  Google Scholar 

  • Anderson JM, Kohring R, Schlüter T (1998) Was insect biodiversity in the Triassic akin to today? A case study from the Molteno Formation (South Africa). Entomol Gen 23:15–26

    Article  Google Scholar 

  • Arnold BC (1965) Structure and growth of mite-induced galls of Hoheria sexstylosa Col. Pac Sci 19:502–506

    Google Scholar 

  • Ash S (1972) Late Triassic plants from the Chinle Formation in northeastern Arizona. Palaeontology 15:598–618

    Google Scholar 

  • Ash S (1997) Evidence of arthropod–plant interactions in the Upper Triassic of the southwestern United States. Lethaia 29:239–248

    Google Scholar 

  • Ash S (1999) An Upper Triassic Sphenopteris showing evidence of insect predation from Petrified Forest National Park, Arizona. Internat J Pl Sci 160:208–215

    Article  Google Scholar 

  • Ash S (2000) Evidence of oribatid mite herbivory in the stem of a Late Triassic tree fern from Arizona. J Paleontol 74:1065–1071

    Article  Google Scholar 

  • Ash S (2009) A Late Triassic flora and associated invertebrate fossils from the basal beds of the Chinle Formation in Dinnebito Wash, eastcentral Arizona, USA. Palaeontographica Abt B 282:1–37

    Article  Google Scholar 

  • Ash SR (2014) Contributions to the Upper Triassic Chinle flora in the American Southwest. Palaeobiodiv Palaeoenviron 94:279–294

    Article  Google Scholar 

  • Ash S, Savidge RA (2004) The bark of the Late Triassic Araucarioxylon arizonicum tree from Petrified Forest National Park, Arizona. Internat Assoc Wood Anat J 25:349–368

    Google Scholar 

  • Barboni R, Dutra TL (2015) First record of Ginkgo-related fertile organs (Hamshawvia, Stachyopitys) and leaves (Baiera, Sphenobaiera) in the Triassic of Brazil, Santa Maria Formation. J So Am Earth Sci 63:417–435

    Article  Google Scholar 

  • Beck AL, Labandeira CC (1998) Early Permian insect folivory on a gigantopterid-dominated riparian flora from North-central Texas. Palaeogeogr Palaeoclimat Palaeoecol 142:139–173

    Article  Google Scholar 

  • Bedard WD (1968) The sugar pine cone beetle. US Dept Agric For Pest Leaf 112:1–6

    Google Scholar 

  • Béthoux O, Papier F, Nel A (2005) The Triassic radiation of the entomofauna. C R Palevol 4:609–621

    Article  Google Scholar 

  • Bird RD (1926) The Life History of the Saskatoon Sawfly, Hoplocampa halcyon Nort. Master’s Thesis, University of Manitoba, Treesbank, Manitoba, pp 21

    Google Scholar 

  • Blank SM, Schmidt S, Taeger A (eds) (2006) Recent Sawfly research: synthesis and prospects. Goecke & Evers, Keltern, Germany, p 702

    Google Scholar 

  • Boczek J, Shevchenko VG (1996) Ancient associations: eriophyoid mites on gymnosperms. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites—their biology, natural enemies and control. Elsevier Science B.V, Amsterdam, pp 217–225

    Chapter  Google Scholar 

  • Bomfleur B, Decombeix A-L, Escapa IH, Schwendemann AB, Axsmith B (2013) Whole-plant concept and environment reconstruction of a Telemachus conifer (Voltziales) from the Triassic of Antarctica. Int J Plant Sci 174:425–444

    Article  Google Scholar 

  • Boughton AJ, Pemberton RW (2011) Limited field establishment of a weed biocontrol agent, Floracarus perrepae (Acariformes: Eriophyidae), against Old World climbing fern in Florida—a possible role of mite resistant plant genotypes. Environ Entomol 40:1448–1457

    Article  Google Scholar 

  • Brues CT (1924) The specificity of food plants in the evolution of phytophagous insects. Am Nat 58:127–144

    Article  Google Scholar 

  • Burdfield-Steel ER, Shuker DM (2014) The evolutionary ecology of the Lygaeidae. Ecol Evol 4:2278–2301

    Google Scholar 

  • Burdick DJ (1961) A taxonomic and biological study of the genus Xyela Dalman in North America. Univ Calif Publ Entomol 17:281–353

    Google Scholar 

  • Cairncross B, Anderson JM, Anderson HM (1995) Palaeoecology of the Triassic Molteno Formation, Karoo Basin, South Africa—sedimentological and palaeontological evidence. S Afr J Geol 98:452–478

    Google Scholar 

  • Cariglino B, Gutiérrez PR (2011) Plant-insect interactions in a Glossopteris flora from the La Golondrina Formation (Guadalupian–Lopingian), Santa Cruz Province, Patagonia, Argentina. Ameghiniana 48:103–112

    Article  Google Scholar 

  • Carpenter FM (1960) A Triassic odonate from Argentina. Psyche 67:71–75

    Article  Google Scholar 

  • Carvalho M, Wilf P, Barrios H, Windsor DM, Currano ED, Labandeira CC, Jaramillo CA (2014) Insect leaf-chewing damage tracks herbivore richness in modern and ancient forests. PLoS One 9(5):e94950

    Article  Google Scholar 

  • Castagnoli M (1996) Ornamental coniferous and shade trees. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites—their biology, natural enemies and control. Elsevier Science B.V, Amsterdam, pp 661–671

    Chapter  Google Scholar 

  • Chen Z, Benton MJ (2012) The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat Geosci 5:375–383. https://doi.org/10.1038/ngeo1475

    Article  Google Scholar 

  • Childers CC (1997) Feeding and oviposition injuries to plants. In: Lewis T (ed) Thrips as Crop Pests. CAB International, Wallingford, UK, pp 505–537

    Google Scholar 

  • Cobben RH (1978) Evolutionary trends in Heteroptera. Part II. Mouthpart-structures and feeding strategies. Meded Landbouwhoesch Wageningen 78(5):1–407

    Google Scholar 

  • Comstock JA (1939) Studies in Pacific Coast Lepidoptera. Bull Calif Acad Sci 38:34–35

    Google Scholar 

  • Condamine FL, Nagalingum NS, Marshall CR, Morlon H (2015) Origin and diversification of living cycads: a cautionary tale on the impact of the branching process prior in Bayesian molecular dating. BMC Evol Biol 15:65. https://doi.org/10.1186/s12862-015-0347-8

    Article  Google Scholar 

  • Corbet PS (1999) Dragonflies: behaviour and ecology of Odonata. Harley Books, Colchester, UK, p 829

    Google Scholar 

  • Cornet B (1996) A new gnetophytes from the Late Carnian (Late Triassic) of Texas and its bearing on the origin of the angiosperm carpel and stamen. In: Taylor DW, Hickey LJ (eds) Flowering plant origin, evolution and phylogeny. Chapman & Hall, New York, pp 32–67

    Chapter  Google Scholar 

  • Creber GT, Ash SF (2004) The Late Triassic Schilderia adamanica and Woodworthia arizonica trees of the Petrified Forest National Park, Arizona, USA. Palaeontology 47:21–38

    Article  Google Scholar 

  • De Lillo E, Monfreda R (2004) ‘Salivary secretions’ of eriophyoids (Acari: Eriophyoidea): first results of an experimental model. Exper Appl Acarol 34:291–306

    Google Scholar 

  • Ding Q, Labandeira CC, Ren D (2014) Biology of a leaf miner (Coleoptera) on Liaoningocladus boii (Coniferales) from the Early Cretaceous of Northeastern China and the leaf-mining biology of possible insect culprit clades. Arthro Syst Phyl 72:281–308

    Google Scholar 

  • Ding Q, Labandeira CC, Ren D (2015) Insect herbivory, plant-host specialization and tissue partitioning on mid-Mesozoic broadleaved conifers of Northeastern China. Palaeogeogr Palaeoclimatol Palaeoecol 440:259–273

    Article  Google Scholar 

  • Docters van Leeuwen-Reijnvaan J, Docters van Leeuwen WM (1926) The Zoocecidia of the Netherlands East Indies. Batavia, Drukkerij de Unie, p 601

    Google Scholar 

  • Donovan MP, Iglesias A, Wilf P, Labandeira CC, Cúneo NR (2016) Rapid recovery of Patagonian plant–insect associations after the end-Cretaceous extinction. Nat Ecol Evol 1:0012. https://doi.org/10.1038/s41559-016-0012

    Article  Google Scholar 

  • Doorenweerd C, van Nieukerken EJ, Sohn J-C, Labandeira CC (2015) A revised checklist of Nepticulidae fossils (Lepidoptera) indicates an early Cretaceous origin. Zootaxa 3963:295–334

    Article  Google Scholar 

  • Dreger-Jauffret F, Shorthouse JD (1992) Diversity of gall-inducing insects and their galls. In: Shorthouse JD, Rohfritsch O (eds) Biology of insectinduced galls. Oxford University Press, New York, pp 8–33

    Google Scholar 

  • Erwin DH (2006) Extinction: how life on Earth nearly ended 250 million years ago. Princeton University Press, Princeton, p 296

    Google Scholar 

  • Evans JW (1971) Some Upper Triassic Hemiptera from Mount Crosby, Queensland. Mem Queensland Mus 16:145–151

    Google Scholar 

  • Felt EP (1917) Key to American insect galls. N Y State Mus Bull 200:1–310. pl 1–16

    Google Scholar 

  • Feng Z, Su T, Yang J, Chen Y, Wei H, Dai J, Guo Y, Liu J, Ding J (2014) Evidence for insect-mediated skeletonization on an extant fern family from the Upper Triassic of China. Geology 42:407–410

    Article  Google Scholar 

  • Feng Z, Wang J, Rößler R, Ślipiński A, Labandeira CC (2017) Late Permian wood-borings reveal an intricate network of ecological relationships. Nat Commun 8. https://doi.org/10.1038/s41467-017-00696-0

  • Fenton B, Birch ANE, Malloch G, Lanham PG, Brennan RM (2000) Gall mite molecular phylogeny and its relationship to the evolution of plant host specificity. Expt Appl Acarol 24:831–861

    Article  Google Scholar 

  • Floyd D (1993) Oreophoetes peruana―a very unconventional stick insect! Amateur Entomol Soc 52:121–124, pl 10

    Google Scholar 

  • Fraser NB, Grimaldi DA, Olsen PC, Axsmith BA (1996) A Triassic Lagerstätte from eastern North America. Nature 380:615–620

    Article  Google Scholar 

  • Freeman TP, Goolsby JA, Oxman SK, Nelson DR (2005) An ultrastructural study of the relationship between the mite Floracarus perrepae Knihinicki & Boczek (Acariformes: Eriophyidae) and the fern Lygodium microphyllum (Lygodiaceae). Austral J Entomol 44:57–61

    Article  Google Scholar 

  • Funkhouser WD (1917) Biology of the Membracidae of the Cayuga Lake Basin. Cornell Univ Agric Expt Sta Mem 11:173–445

    Google Scholar 

  • Futuyma DJ, Mitter C (1996) Insect–plant interactions: the evolution of component communities. Phil Trans R Soc Lond B 351:1361–1366

    Article  Google Scholar 

  • Gallego OF (1997) Hallazgos de insectos Triásicos en la Argentina. Ameghiniana 34:511–516

    Google Scholar 

  • Gallego OF, Martins-Neto RG (1999) La entomofauna Mesozoica de la Argentina: Estado actual del conocimiento. Rev Soc Argentina 58:86–94

    Google Scholar 

  • Gallego OF, Martins-Neto RG, Nielsen SN (2005) Conchostracans and insects from the Upper Triassic of the Biobío river (‘Santa Juana Formation’), south-central Chile. Rev Geol Chile 32:293–311

    Article  Google Scholar 

  • Gangwere SK (1966) Relationships between the mandibles, feeding behavior, and damage inflicted on plants by the feeding of certain acridids (Orthoptera). Mich Entomol 1:13–16

    Google Scholar 

  • Gao T, Shih CK, Labandeira CC, Liu X, Wang ZQ, Che YL, Yin XC, Ren D (2017) Maternal care by Early Cretaceous cockroaches and the early evolution of the oothecate condition. J Syst Entomol (in press)

    Google Scholar 

  • Gastaldo RA, Adendorff R, Bamford M, Labandeira CC, Neveling J, Sims H (2005) Taphonomic trends of macrofloral assemblages across the Permian–Triassic boundary, Karoo Basin, South Africa. PALAIOS 20:480–498

    Article  Google Scholar 

  • Geertsema H, van den Heever JA (1996) A new beetle, Afrocupes firmae gen. et sp. nov. (Permocupedidae), from the Late Palaeozoic Whitehill Formation of South Africa. So Afr J Sci 92:497–499

    Google Scholar 

  • Geertsema DE, van Dijk DE, van den Heever JA (2002) Palaeozoic insects of Southern Africa: a review. Palaeont Afr 38:19–25

    Google Scholar 

  • Geinitz HB (1876) Ueber rhätischen Pflanzen und Thierreste in den Argentinischen Provinzen, La Rioja, San Juan, und Mendoza. Palaeontographica Suppl 3:1–14

    Google Scholar 

  • Gerson U (1996) Secondary associations: eriophyoid mites on ferns. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites—their biology, natural enemies and control. Elsevier Science B.V, Amsterdam, pp 227–230

    Chapter  Google Scholar 

  • Geyer G, Kelber K-P (1987) Flügelreste und Lebensspuren von Insekten aus dem Unteren Keuper Mainfrankens. Neues Jb Geol Paläontol Abh 174:331–355

    Google Scholar 

  • Ghosh AK, Kar R, Chatterjee R (2015) Leaf galls on Dicroidium hughesii (Feistmantel) Lele from the Triassic of India―a new record. Alcheringa 39:92–98

    Article  Google Scholar 

  • Gieshagen K (1919) Entwicklungsgeschichte einer Milbengalle an Nephrolepis biserrata Schott. Jahr Wiss Bot 58:66–104. pls 2–3

    Google Scholar 

  • Gnaedinger SC, Adami-Rodrigues K, Gallego OF (2014) Endophytic oviposition on leaves from the Late Triassic of northern Chile: Ichnotaxonomic, palaeobiogeographic and palaeoenvironment considerations. Geobios 47:221–236

    Article  Google Scholar 

  • Golden M, Follett PA, Wright MG (2006) Assessing Nezara viridula (Hemiptera: Pentatomidae) feeding damage in macadamia nuts by using a biological stain. J Econ Entomol 99:822–827

    Article  Google Scholar 

  • Grauvogel-Stamm L, Kelber K-P (1996) Plant–insect interactions and coevolution during the Triassic in Western Europe. Paleontol Lomb 5:5–23

    Google Scholar 

  • Grimaldi DA, Engel MS (2005) Evolution of the insects. Cambridge University Press, New York, p 755

    Google Scholar 

  • Günthart H, Günthart MS (1983) Aguriahana germari (Zett.) (Hom. Auch. Cicadellidae, Typhlocybinae): breeding and specific feeding behavior on pine needles. Mitt Schweizer Entomol Ges 56:33–44

    Google Scholar 

  • Hancox PJ (2000) The continental Triassic of South Africa. Zb Geol Paläontol 11–12:1285–1324

    Google Scholar 

  • Handley DT, Pollard JE (1993) Microscopic examination of tarnished plant bug (Heteroptera: Miridae) feeding damage to strawberry. J Econ Entomol 86:505–510

    Article  Google Scholar 

  • Haughton SH (1924) The fauna and stratigraphy of the Stormberg Series. Ann So Afr Mus 12:323–495

    Google Scholar 

  • Heer O (1877) Die Vorweltliche Flora der Schweiz. J. Wurster, Zürich, p 182. pls 1–70

    Google Scholar 

  • Hering EM (1951) Biology of the Leaf Miners. Springer, Dordrecht, p 420

    Book  Google Scholar 

  • Hermsen EJ, Taylor TN, Taylor EL, Stevenson DM (2006) Cataphylls of the Middle Triassic cycad Antarcticycas schopfii and new insights into cycad evolution. Am J Bot 93:724–738

    Article  Google Scholar 

  • Hochuli PA, Hermann E, Vigran JO, Bucher H, Weissert H (2010) Rapid demise and recovery of plant ecosystems across the end-Permian extinction event. Glob Planet Change 74:144–155

    Article  Google Scholar 

  • Hori K (1971) Studies on the feeding habits of Lygus disponsi Linnavuori (Hemiptera: Miridae) and the injury to its host plants. I. Histological observations of the injury. Appl Entomol Zool 6:84

    Article  Google Scholar 

  • Hsü J, Chu CN, Chen Y, Tuan SY, YF H, Chu WC (1974) new genera and species of the late Triassic plants from Yungjen, Yunnan I. Acta Bot Sin 16:266–278

    Google Scholar 

  • Janzen DH (1971) Seed predation by animals. Annu Rev Ecol Syst 2:465–492

    Article  Google Scholar 

  • Jeppson LR, Keifer HH, Baker EW (1975) Mites Injurious to Economic Plants. University of California Press, Berkeley, Los Angeles and London, p 614. pls 1–74

    Google Scholar 

  • Johnson WT, Lyon HH (1991) Insects that feed on trees and shrubs, 2nd edn. Cornell University Press, Ithaca, NY, p 560

    Google Scholar 

  • Jurzitza G (1974) Antiagrion gayi (Selys, 1876) und A. grinsbergsi spec. nov., zwei Verwechslungsarten aus Chile (Zygoptera: Coenagrionidae). Odonatologica 3:221–239

    Google Scholar 

  • Kelber K-P (1988) Was ist Equisetites foveolatus? In: Hagdorn H (ed) Neue Forschung zur Erdegeschichte von Crailsheim. Sond Gesel Naturk Württemberg 1, pp 166–184

    Google Scholar 

  • Kelber K-P, Geyer G (1989) Lebensspuren von Insekten an Pflanzen des unteren Keupers. Cour Forsch Inst Senck 109:165–174

    Google Scholar 

  • Kellogg DW, Taylor EL (2004) Evidence of oribatid mite detritivory in Antarctica during the Late Paleozoic and Mesozoic. J Paleontol 78:1146–1153

    Article  Google Scholar 

  • Klavins SD, Kellogg DW, Krings M, Taylor EL, Taylor TN (2005) Coprolites in a Middle Triassic cycad pollen cone: evidence for insect pollination in early cycads? Evol Ecol Res 7:479–488

    Google Scholar 

  • Krantz GW, Lindquist EE (1979) Evolution of phytophagous mites (Acari). Annu Rev Entomol 24:121–158

    Article  Google Scholar 

  • Krassilov VA, Karasev E (2008) First evidence of plant–arthropod interaction at the Permian–Triassic boundary in the Volga Basin, European Russia. Alavesia 2:247–252

    Google Scholar 

  • Krassilov VA, Karasev E (2009) Paleofloristic evidence of climate change near and beyond the Permian–Triassic boundary. Palaeogeogr Palaeoclimat Palaeoecol 284:326–336

    Article  Google Scholar 

  • Krassilov V, Silantieva N, Lewy Z (2008) Traumas on fossil leaves from the Cretaceous of Israel. In: Krassilov V, Rasnitsyn A (eds) Plant–Arthropod interactions in the Early Angiosperm history: evidence from the Cretaceous of Israel. Pensoft/Brill, Sofia/Leiden, pp 7–187

    Chapter  Google Scholar 

  • Kraus JE, Montenegro G, Kim AJ (1993) Morphological studies on entomogenous stem galls of Microgramma squamulosa (Kauf.) Sota (Polypodiaceae). Am Fern J 83:120–128

    Article  Google Scholar 

  • Krzeminski W (1992) Triassic and Lower Jurassic stage of Diptera evolution. Mitt Schweiz Entomol Gesel 65:39–59

    Google Scholar 

  • Kustatscher E, Franz M, Heunisch C, Reich M, Wappler T (2014) Floodplain habitats of braided river systems: depositional environment, flora and fauna of the Solling Formation (Buntsandstein, Lower Triassic) from Bremke and Fürstenberg (Germany). Palaeobiodiv Palaeoenviron 94:237–270

    Article  Google Scholar 

  • Kustatscher E, van Konijnenburg-Van Cittert JHA (2013) Seed ferns from the European Triassic—an overview. In: Tanner LH, Spielmann JA, Lucas SG (eds) The Triassic System, vol 61. New Mexico Mus Nat Hist Sci Bull, New Mexico, pp 331–344

    Google Scholar 

  • Labandeira CC (1997) Insect mouthparts; ascertaining the paleobiology of insect feeding strategies. Annu Rev Ecol Syst 28:153–193

    Article  Google Scholar 

  • Labandeira CC (2002a) The paleobiology of predators, parasitoids and parasites: accommodation and death in the fossil record of terrestrial invertebrates. In: Kowalewski M, Kelley PH (eds) The fossil record of predation. Paleontol Soc Pap 8, pp 211–250

    Google Scholar 

  • Labandeira CC (2002b) The history of associations between plants and animals. In: Herrera C, Pellmyr O (eds) Plant–animal interactions: an evolutionary approach. Blackwell, Oxford, pp 248–261

    Google Scholar 

  • Labandeira CC (2005) The fossil record of insect extinction: new approaches and future directions. Am Entomol 51:14–29

    Article  Google Scholar 

  • Labandeira CC (2006a) Silurian to Triassic plant and insect clades and their associations: new data, a review, and interpretations. Arthro Syst Phylo 64:53–94

    Google Scholar 

  • Labandeira CC (2006b) The four phases of plant–arthropod associations in deep time. Geol Acta 4:409–438

    Google Scholar 

  • Labandeira CC (2010) The pollination of mid Mesozoic seed plants and the early history of long-proboscid insects. Ann Mo Bot Gard 97:469–513

    Article  Google Scholar 

  • Labandeira CC (2012) Evidence for outbreaks from the fossil record of insect herbivory. In: Barbosa P, Letorneau D, Agrawal A (eds) Insect outbreaks revisited. Blackwell, Oxford, pp 269–290

    Google Scholar 

  • Labandeira CC (2013a) Deep-time patterns of tissue consumption by terrestrial arthropod herbivores. Naturwissenschaften 99:255–264

    Google Scholar 

  • Labandeira CC (2013b) A paleobiological perspective on plant–insect interactions. Curr Opin Pl Biol 16:414–421

    Article  Google Scholar 

  • Labandeira CC (2016) Faunal ecology of the Molteno: towards an integrated ecology. In: Anderson JM, Anderson HM (eds) Molteno sphenophytes: Late Triassic biodiversity in southern Africa. Evol Stud Inst Monogr. Ser 1:14

    Google Scholar 

  • Labandeira CC, Allen EM (2007) Minimal insect herbivory for the Lower Permian Coprolite Bone bed locality of north-central Texas, USA, and comparison to other late Paleozoic floras. Palaeogeogr Palaeoclimatol Palaeoecol 247:197–219

    Article  Google Scholar 

  • Labandeira CC, Currano ED (2013) The fossil record of plant–insect dynamics. Annu Rev Earth Planet Sci 41:287–311

    Article  Google Scholar 

  • Labandeira CC, Kustatscher E, Wappler T (2016) Floral assemblages and patterns of insect herbivory during the Permian to Triassic of Northeastern Italy. PLoS One 11(11):e0165205

    Article  Google Scholar 

  • Labandeira CC, Phillips TL (1996) A Carboniferous petiole gall: insight into early ecologic history of the Holometabola. Proc Natl Acad Sci U S A 93:8470–8474

    Article  Google Scholar 

  • Labandeira CC, Prevec R (2014) Plant paleopathology and the roles of pathogens and insects. Internat J Paleopathol 4:1–16

    Article  Google Scholar 

  • Labandeira CC, Tremblay S, Bartowski KE, Hernick LV (2014) Middle Devonian liverwort herbivory and antiherbivore defense. New Phytol 200:247–258

    Article  Google Scholar 

  • Labandeira CC, Wilf P, Johnson KR, Marsh F (2007) Guide to insect (and other) damage types on compressed plant fossils. Version 3.0, Spring 2007. Smithsonian Institution, Washington, DC, p 25

    Google Scholar 

  • Lamb KP (1953) New plant galls. II―Description of seven new species of gall-mites and the galls which they cause. Trans R Soc New Zealand 80:371–382. pls. 78–83

    Google Scholar 

  • Larew HG (1981) A comparative anatomical study of galls caused by the major cecidogenetic groups, with special emphasis on the nutritive tissue. PhD thesis, Department of Entomology, Oregon State University, pp 392

    Google Scholar 

  • Larew HG (1992) Fossil galls. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, New York, pp 50–59

    Google Scholar 

  • Law C, Exley C (2011) New insight into silica deposition in horsetail (Equisetum arvense). BMC Plant Biol 11:112. https://doi.org/10.1186/1471-2229-11-112

    Article  Google Scholar 

  • Lawton JH (1982) Vacant niches and unsaturated communities: a comparison of bracken herbivores at sites on two continents. J Anim Ecol 51:573–595

    Article  Google Scholar 

  • Lewandowski M, Kozak M (2008) Distribution of eriophyoid mites (Acari: Eriophyoidea) on coniferous trees. Exp Appl Acarol 44:89–99

    Article  Google Scholar 

  • Lin X, Shih MJH, Labandeira CC, Ren D (2016) New data from the Middle Jurassic of China shed light on the phylogeny and origin of the proboscis in the Mesopsychidae (Insecta: Mecoptera). BMC Evol Biol 16:1. https://doi.org/10.1186/s12862-015-0575-y

    Article  Google Scholar 

  • Linck O (1949) Fossile Bohrgänge (Anobichnium simile n.g. n.sp.) an einem Keuperholz. Neues Jb Mineral Geol Paläontol 1949:180–185

    Google Scholar 

  • Lozovsky VR, Balabanov YP, Karasev EV, Novikov IV, Ponomarenko AG, Yaroshenko OP (2016) The terminal Permian in European Russia: Vyaznikovian Horizon, Nedubrovo Member, and Permian–Triassic boundary. Strat Geol Corr 24:364–380

    Article  Google Scholar 

  • MacRae C (1999) Life etched in stone: fossils of South Africa. Geological Society of South Africa, Johannesburg, p 305

    Google Scholar 

  • Maia VC, Santos MG (2011) A new genus and species of gall midge (Diptera, Cecidomyiidae) associated with Microgramma vaccinifolia (Langsd. & Fisch.) Copel. (Polypodiaceae) from Brazil. Rev Bras Entomol 55:40–44

    Article  Google Scholar 

  • Maskell WM (1887) An Account of the Insects Noxious to Agriculture and Plants in New Zealand. The Scale-Insects (Coccidae). State Forests and Agricultural Department, Wellington, p 116. pl 23

    Book  Google Scholar 

  • McElwain JC, Wagner PJ, Hesselbo SP (2009) Fossil plant relative abundances indicate sudden loss of Late Triassic biodiversity in East Greenland. Science 324:1554–1556

    Article  Google Scholar 

  • McKenna DD, Wild AL, Kojun K, Bellamy CL, Beutel RG, Caterino MS, Farnum CW, Hawks DC, Ivie MA, Jameson ML, Leschen RAB, Marvaldi AE, McHugh JV, Newton AF, Robertson JA, Thayer MK, Whiting MF, Lawrence JF, Ślipiński A, Maddison DR, Farrell BD (2015) The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Syst Entomol 40:835–880

    Article  Google Scholar 

  • McLoughlin S (2011) New records of leaf galls and arthropod oviposition scars in Permian–Triassic Gondwanan gymnosperms. Austral J Bot 59:156–169

    Article  Google Scholar 

  • Meller B, Ponomarenko AG, Vasilenko DV, Fischer TC, Aschauer B (2011) First beetle elytra, abdomen (Coleoptera) and a mine trace from Lunz (Carnian, Late Triassic, Lunz-am-See, Austria) and their taphonomical and evolutionary aspects. Palaeontology 54:97–110

    Article  Google Scholar 

  • Meng Q, Labandeira CC, Ding Q, Ren D (2017) The natural history of oviposition on a ginkgophyte fruit from the Middle Jurassic of Northeastern China. Ins Sci 24. https://doi.org/10.1111/1744-7917.12506

  • Meyer J (1987) Plant galls and gall inducers. Gebrüder Borntraeger, Berlin, p 291

    Google Scholar 

  • Minello LF (1994) As “florestas petrificadas” da região de São Pedro do Sul e Mata, R.S. III—análise morfológica megascópica, afinidades e consideraçõs paleoambentais. Acta Geol Leopold 39:75–91

    Google Scholar 

  • Mitter C, Farrell B, Wiegmann B (1988) The phylogenetic study of adaptive zones: has phytophagy promoted insect diversification? Am Nat 132:107–128

    Article  Google Scholar 

  • Moisan P, Labandeira CC, Matushkina N, Wappler T, Voigt S, Kerp H (2012) Lycopsid–dragonfly associations and odonatopteran oviposition on Triassic herbaceous Isoetites. Palaeogeogr Palaeoclimatol Palaeoecol 344–345:6–15

    Article  Google Scholar 

  • Moreno T, Gibbons W (eds) (2007) The geology of Chile. The Geological Society, London

    Google Scholar 

  • Nalepa A (1909) Eriophyiden. Denk Kaiser Akad Wiss Math-Naturwiss Klasse 84:523–536. pls 2–6

    Google Scholar 

  • Nathorst AG (1876) Bidrag till Sveriges fossila Flora. Kongl Sven Veten Akad Handl 14:1–82

    Google Scholar 

  • Nathorst AG (1878) Beiträge zur Fossilen Flora Schwedens. Über Einige Rhätische Pflanzen von Pälsjö in Schonen. E. Schweizerbart’sche Verlagshandlung, Stuttgart, p 82

    Google Scholar 

  • Needham JG, Frost SW, Tothill BH (1928) Leaf-mining insects. Williams & Wilkins, Baltimore, p 351

    Google Scholar 

  • Nel A, Prokop J (2006) New fossil gall midges from the earliest Eocene French amber (Insecta, Diptera, Cecidomyiidae). Geodiversitas 28:3754

    Google Scholar 

  • Oldfield GN (1996) Diversity and host plant specificity. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites—their biology, natural enemies and control. Elsevier Science B.V, Amsterdam, pp 199–216

    Chapter  Google Scholar 

  • Oldfield GN (2005) Biology of gall-inducing Acari. In: Raman A, Schaefer CW, Withers TM (eds) Biology, ecology, and evolution of gall-inducing arthropods, vol 1. Science Publishers, Enfield, NH, pp 35–57

    Google Scholar 

  • Papier F, Nel A, Grauvogel-Stamm L, Gall J-C (1997) La plus ancienne sauterelle Tettigoniidae, Orthoptera (Trias, NE France): mimétisme ou exaptation? Paläontol Z 71:71–77

    Article  Google Scholar 

  • Patra B, Bera S (2007) Herbivore damage to ferns caused by a chrysomelid beetle from lower Gangetic Plains of West Bengal, India. Am Fern J 97:19–29

    Article  Google Scholar 

  • Pedersen KR, Crane PR, Friis EM (1989) The morphology and phylogenetic significance of Vardekloeftia Harris (Bennettitales). Rev Palaeobot Palynol 60:7–24

    Article  Google Scholar 

  • Pinto ID (1956) Artrópodos da Formação Santa Maria (Triássico Superior) do Rio Grande do Sul, cum notícias sôbre alguns restos vegetais. Bol Soc Brasil Geol 5:75–94. pls. 1–4

    Google Scholar 

  • Pinto ID, de Ornellas LP (1974) A new insect Triassoblatta cargnini Pinto et Ornellas, sp. nov., a Triassic blattoid from Santa Maria Formation, South Brazil. An Acad Brasil Cien 46:515–521

    Google Scholar 

  • Pollard DG (1973) Plant penetration by feeding aphids (Hemiptera: Aphidoidea): a review. Bull Entomol Res 62:631–714

    Article  Google Scholar 

  • Ponomarenko AG (2016) Insects during the time around the Permian–Triassic crisis. Paleontol J 50:174–186

    Article  Google Scholar 

  • Pott C, Krings M, Kerp H (2007) A surface microrelief on the leaves of Glossophyllum florinii (?Ginkgoales) from the Upper Triassic of Lunz, Austria. Bot J Linn Soc 153:87–95

    Article  Google Scholar 

  • Pott C, Labandeira CC, Krings M, Kerp H (2008) Fossil insect eggs and ovipositional damage on bennettitalean leaf cuticles from the Carnian (Upper Triassic) of Australia. J Paleontol 82:778–789

    Article  Google Scholar 

  • Prevec R, Labandeira CC, Neveling J, Gastaldo RA, Looy CV, Bamford M (2009) Portrait of a Gondwanan ecosystem: a new late Permian fossil locality from KwaZulu-Natal, South Africa. Rev Palaeobot Palynol 156:454–493

    Article  Google Scholar 

  • Prinzing A, Ozinga WA, Brändle M, Courty PE, Hennion F, Labandeira CC, Parisod C, Pihain M, Bartish IV (2017) Benefits from living together? Clades whose species use similar habitats may persist as a result of eco-evolutionary feedbacks. New Phytol 213:67–82

    Article  Google Scholar 

  • Pritchard AE (1951) The fern mite. Calif Agric 5:10

    Google Scholar 

  • Pryer KM, Schuettpelz E, Wolf PG, Schneider H, Smith AR, Cranfill R (2004) Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences. Am J Bot 91:1582–1598

    Article  Google Scholar 

  • Queiroz JM (2002) Distribution, survivorship and mortality sources in immature stages of the Neotropical leaf miner Pachyschelus coeruleipennis Kerremans (Coleoptera: Buprestidae). Bras J Biol 62:69–76

    Article  Google Scholar 

  • Quintero C, Garibaldi LA, Grez A, Polidori C, Nieves-Aldrey JL (2014) Galls of the temperate forest of southern South America: Argentina and Chile. In: Fernandes GW, Santos JC (eds) Neotropical insect galls. Springer, Dordrecht, pp 429–463

    Google Scholar 

  • Ramezani J, Fastovsky DE, Bowring SA (2014) Revised chronostratigraphy of the lower Chinle Formation strata in Arizona and New Mexico (USA): high precision U-Pb geochronological constraints on the Late Triassic evolution of dinosaurs. Am J Sci 314:981–1006

    Article  Google Scholar 

  • Rasnitsyn AP (1969) Proiskhozhdenie i ehvolyutsiya nizshikh pereponchatokrylykh [The origin and evolution of lower Hymenoptera]. Tr Paleontol Inst 123:1–196

    Google Scholar 

  • Retallack GJ (1995) Permian–Triassic life crisis on land. Science 267:77–80

    Article  Google Scholar 

  • Retallack GJ, Dilcher DL (1988) Reconstructions of selected seed ferns. Ann Missouri Bot Gard 75:1010–1057

    Article  Google Scholar 

  • Retana-Salazar AP, Nishida K (2007) First gall-inducing thrips on Elaphoglossum ferns: a new genus and species of thrips, Jersonithrips galligenus from Costa Rica (Insecta, Thysanoptera, Phlaeothripidae). Senck Biol 87:143–148

    Google Scholar 

  • Riek EF (1955) Fossil insects from the Triassic Beds at Mt. Crosby, Queensland. Austral J Zool 3:654–691

    Article  Google Scholar 

  • Riek EF (1974) Upper Triassic insects from the Molteno “Formation”, South Africa. Palaeontol Afr 17:19–31

    Google Scholar 

  • Riek EF (1976a) A new collection of insects from the Upper Triassic of South Africa. Ann Natal Mus 22:791–820

    Google Scholar 

  • Riek EF (1976b) An unusual mayfly (Insecta: Ephemeroptera) from the Triassic of South Africa. Palaeont Afr 19:149–151

    Google Scholar 

  • Rohfritsch O (1992) Patterns in gall development. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, New York, pp 60–86

    Google Scholar 

  • Roopnarine PD, Angielczyk KD (2007) Trophic network models explain instability of Early Triassic terrestrial communities. Proc R Soc B 274:2077–2086

    Article  Google Scholar 

  • Roopnarine PD, Angielczyk KD (2015) Community stability and selective extinction during the Permian–Triassic mass extinction. Science 350:90–93

    Article  Google Scholar 

  • Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats. The fauna of collards. Ecol Monogr 43:95–124

    Article  Google Scholar 

  • Roselt G (1954) Ein neuer Schachtelhalm aus dem Keuper und Beiträgezur Kenntnis von Neocalamites meriani Brongn. Geologie 3:617–643

    Google Scholar 

  • Rozefelds AC (1985) A fossil zygopteran nymph (Insecta, Odonata) from the Late Triassic Aberdare Conglomerate, southeast Queensland. Proc Roy Soc Queensland 96:25–32

    Google Scholar 

  • Rozefelds AC, Sobbe I (1987) Problematic insect leaf mines from the Upper Triassic Ipswich coal measures southeastern Queensland, Australia. Alcheringa 11:51–57

    Article  Google Scholar 

  • Sadler C, Parker W, Ash S (2015) Dawn of the Dinosaurs. The Late Triassic in the American Southwest. Petrified Forest Museum Association, Petrified Forest, AZ, p 124

    Google Scholar 

  • Sarzetti LC, Labandeira CC, Muzón j WP, Cúneo NR, Johnson KR, Genise JF (2009) Odonatan endophytic oviposition from the Eocene of Patagonia: the ichnogenus Paleoovoidus and implications for dragonfly behavioral stasis. J Paleontol 83:431–447

    Article  Google Scholar 

  • Schachat S, Labandeira CC (2015) Evolution of a complex behavior: the origin and initial diversification of foliar galling by Permian insects. Sci Nat 102:14. https://doi.org/10.1007/s00114-015-1266-7

    Article  Google Scholar 

  • Schachat S, Labandeira CC, Gordon J, Chaney DS, Levi S, Halthore M, Alvarez J (2014) Plant–insect interactions from the Early Permian (Kungurian) Colwell Creek Pond, north-central Texas: the early spread of herbivory in clastic environments. Int J Plant Sci 175:855–890

    Article  Google Scholar 

  • von Schlechtendal DHR (1916) Eriophyidocecidien die durch Gallmilben verursachten Pflanzengallen. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 295–498. pls 1–28

    Google Scholar 

  • Schlüter T (1990) Fossil insect localities in Gondwanaland. Entomol Gen 15:61–76

    Article  Google Scholar 

  • Schlüter T (1997) Validity of the Paratrichoptera—an extinct order related to the Mecoptera, Diptera, Trichoptera or Lepidoptera? Suggestions based on discoveries in the Upper Triassic Molteno Formation of South Africa. Berl Geowiss Abh 25:303–312

    Google Scholar 

  • Schlüter T (2000) Moltenia rieki n. gen., n. sp. (Hymenoptera: Xyelidae?), a tentative sawfly from the Molteno Formation (Upper Triassic), South Africa. Paläontol Z 74:75–78

    Google Scholar 

  • Schlüter T (2003) Fossil insects in Gondwana—localities and palaeodiversity trends. Acta Zool Cracovien 46:345–371

    Google Scholar 

  • Schmitz OJ (2008) Herbivory from individuals to ecosystems. Annu Rev Ecol Evol Syst 39:133–152

    Article  Google Scholar 

  • Schneider J (1966) Ennemis des fougeres ornementales. Phytoma 18:26–32

    Google Scholar 

  • Scott AC, Anderson JM, Anderson HM (2004) Evidence of plant–insect interactions in the Upper Triassic Molteno Formation of South Africa. J Geol Soc Lond 161:401–410

    Article  Google Scholar 

  • Selden PA, Anderson HM, Anderson JM (2009) A review of the fossil spiders (Araneae) with special reference to Africa, and description of a new specimen from the Triassic Molteno Formation of South Africa. Afr Invert 50:105–116

    Article  Google Scholar 

  • Selden PA, Anderson JM, Anderson HM, Fraser NC (1999) Fossil araneomorph spiders from the Triassic of South Africa and Virginia. J Arachnol 27:401–414

    Google Scholar 

  • Shcherbakov DE (2000) Permian faunas of Homoptera (Hemiptera) in relation to phytogeography and the Permo–Triassic crisis. Paleontol J 34:A251–S267

    Google Scholar 

  • Shcherbakov DE (2008a) Insect recovery after the Permian/Triassic crisis. Alavesia 2:125–131

    Google Scholar 

  • Shcherbakov DE (2008b) On Permian and Triassic insect faunas in relation to biogeography and the Permian–Triassic crisis. Paleontol J 42:15–31

    Google Scholar 

  • Shcherbakov DE, Lukashevich ED, Blagoderov VA (1995) Triassic Diptera and initial radiation of the order. Int J Dipterol Res 6:75–115

    Google Scholar 

  • Shepard HH (1947) Insects infesting stored grain and seeds. Univ Minnesota Agric Expt Sta Bull 340:1–31

    Google Scholar 

  • Shields O (1988) Mesozoic history and neontology of Lepidoptera in relation to Trichoptera, Mecoptera, and angiosperms. J Paleontol 62:251–258

    Article  Google Scholar 

  • Sidor CA, Vilhena DA, Angielczyk KD, Huttenlocker AK, Nesbitt SJ, Peecook BR, Steyer JS, Smith RMH, Tsuji LA (2013) Provincialization of terrestrial faunas following the end-Permian mass extinction. Proc Natl Acad Sci U S A 110:8129–8133

    Article  Google Scholar 

  • Sidorchuk EA, Schmidt AR, Ragazzi E, Roghi G, Lindquist EE (2015) Plant-feeding mite diversity in Triassic amber (Acari: Tetrapodili). J Syst Palaeontol 13:129–151

    Article  Google Scholar 

  • Solomon JD (1995) Guide to insect borers in North American Broadleaf trees and shrubs. US Dept Agric For Serv Agric Hand AH706, Washington DC, p 735

    Google Scholar 

  • Stone GN, Schönrogge K (2003) The adaptive significance of insect gall morphology. Tr Ecol Evol 18:512–522

    Article  Google Scholar 

  • Strullu-Derrien G, McLoughlin S, Phillipe M, Mørk A, Strullu DG (2012) Arthropod interactions with bennettitalean roots in a Triassic permineralized peat from Hopen, Svalbard Archipelago (Arctic). Palaeogeogr Palaeoclimatol Palaeoecol 348–349:45–58

    Article  Google Scholar 

  • Sun Y, Joachimski MM, Wignall PB, Yan C, Chen Y, Jiang H, Wang L, Lai X (2012) Lethally hot temperatures during the Early Triassic greenhouse. Science 338:366–370

    Article  Google Scholar 

  • Swezey OH (1915) A leaf-mining cranefly in Hawaii. Proc Hawaiian Entomol Soc 3:87–89

    Article  Google Scholar 

  • Talhouk AMS (1969) Insects and mites injurious to crops in Middle Eastern Countries. Mon Angew Entomol 21:1–239

    Google Scholar 

  • Tapanila L, Roberts EM (2012) The earliest evidence of holometabolan insect pupation in conifer wood. PLoS One 7:e31668

    Article  Google Scholar 

  • Tillyard RJ (1917) Mesozoic insects of Queensland. No. 1. Planipennia, Trichoptera, and the new order Protomecoptera. Proc Linn Soc NSW 42:175–200, pls. 7–9

    Google Scholar 

  • Tillyard RJ (1918a) Mesozoic insects of Queensland. No. 3. Odonata and Protodonata. Proc Linn Soc NSW 43:417–436, pls. 44–45

    Google Scholar 

  • Tillyard RJ (1918b) Permian and Triassic insects from New South Wales, in the collection of Mr. John Mitchell. Proc Linn Soc NSW 43:720–756, pl. 59

    Google Scholar 

  • Tillyard RJ (1918c) Mesozoic insects of Queensland. No. 4. Hemiptera Heteroptera: the family Dunstaniidae, with a note on the origin of the Heteroptera. Proc Linn Soc NSW 43:568–592

    Google Scholar 

  • Tillyard RJ (1919a) Mesozoic insects of Queensland. No. 5. Mecoptera, the new order Paratrichoptera, and additions to Planipennia. Proc Linn Soc NSW 44:194–212

    Google Scholar 

  • Tillyard RJ (1919b) Mesozoic insects of Queensland. No. 6. Blattodea. Proc Linn Soc NSW 44:358–382

    Google Scholar 

  • Tillyard RJ (1920) Mesozoic insects of Queensland. No. 7. Hemiptera Homoptera; with a note on the phylogeny of the suborder. Proc Linn Soc NSW 44:857–895

    Google Scholar 

  • Tillyard RJ (1921) Mesozoic insects of Queensland. No. 8. Hemiptera Homoptera (contd.). The genus Mesogereon; with a discussion of its relationship with the Jurassic Palaeotinidae. Proc Linn Soc NSW 46:270–284, pls. 16–21

    Google Scholar 

  • Tillyard RJ (1922) Mesozoic insects of Queensland. No. 9. Orthoptera, and additions to the Protorthoptera, Odonata, Hemiptera and Planipennia. Proc Linn Soc NSW 47:447–470, pls. 51–53

    Google Scholar 

  • Tillyard RJ (1923) Mesozoic insects of Queensland. No. 10. Summary of the Upper Triassic insect fauna of Ipswich, Q. (With an appendix describing new Hemiptera and Planipennia). Proc Linn Soc NSW 48:481–498, pl. 43

    Google Scholar 

  • Tillyard RJ (1925) A new fossil insect wing from Triassic beds near Deewhy, N.S.W. Proc Linn Soc NSW 50:374–377, pl. 36

    Google Scholar 

  • Tillyard RJ (1926) Alleged Rhaetic “crane flies” from South America, not Diptera but Homoptera. Am J Sci 5:265–272

    Article  Google Scholar 

  • Tillyard RJ (1937) A small collection of fossil cockroach remains from the Triassic beds of Mount Crosby, Queensland. Proc Roy Soc Queensland 48:35–40

    Google Scholar 

  • Tillyard RJ, Dunstan B (1916) Mesozoic and Tertiary insects of Queensland and New South Wales. Description of the fossil insects and stratigraphical features. Queensland Geol Surv Publ 253:1–60, pls. 1–8

    Google Scholar 

  • Tillyard RJ, Dunstan B (1923) Mesozoic insects of Queensland. Part 1. Introduction and Coleoptera. Queensland Geol Surv Publ 273:1–88, pls. 1–7

    Google Scholar 

  • Tong J, Zhang S, Zuo J, Xiong X (2007) Events during Early Triassic recovery from the end-Permian extinction. Glob Planet Change 55:66–80

    Article  Google Scholar 

  • Turner BR (1975) The stratigraphy and Sedimentary History of the Molteno Formation in the Main Karoo Basin of South Africa and Lesotho. Unpublished PhD thesis. Johannesburg: University of the Witwatersrand, pp 314

    Google Scholar 

  • Turner BR (1978) Trace fossils from the upper Triassic fluviatile Molteno Formation of the Karoo (Gondwana) Supergroup, Lesotho. J Paleontol 52:959–963

    Google Scholar 

  • Vacante V (2016) The handbook of mites of economic plants: identification, bioecology and control. Commonwealth Agricultural Board International, Wallingford, UK, p 872

    Google Scholar 

  • Vincent J (1990) Fracture properties of plants. Adv Bot Res 17:235–287

    Article  Google Scholar 

  • Vishniakova VN (1968) Mesozoic cockroaches with the external ovipositor and peculiarity of their reproduction (Blattodea). In: Rohdendorf BB (ed) Jurassic insects of Karatau. Nauka, Moscow, pp 55–86. (in Russian)

    Google Scholar 

  • Visscher H, Brinkhuis H, Dilcher DL, Elsik WC, Eshet Y, Looy CV, Rampino MR, Traverse A (1996) The terminal Paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse. Proc Natl Acad Sci U S A 93:2155–2158

    Article  Google Scholar 

  • Vogel S (2012) The life of a leaf. University of Chicago Press, Chicago, p 303

    Book  Google Scholar 

  • Walker MV (1938) Evidence of Triassic insects in the Petrified Forest National Monument, Arizona. Proc US Natl Mus 85:137–141, pls. 1–4

    Article  Google Scholar 

  • Walker JD, Geissman JW, Bowring SA, Babcock LE (2013) The Geological Society of America geologic time scale. Geol Soc Am Bull 125:259–272

    Article  Google Scholar 

  • Wang J, Labandeira CC, Zhang S-F, Bek J, Pfefferkorn HW (2009) Permian Circulipuncturites discinisporis Labandeira, Wang, Zhang, Bek et Pfefferkorn gen. et sp. nov. (formerly Discinispora) from China, an ichnotaxon of punch-and-sucking insect on Noeggeranthialean spores. Rev Palaeobot Palynol 156:277–282

    Article  Google Scholar 

  • Wappler T (1999) Die Orthopteren (Insekten der Molteno) Formation (Ober–Trias) im Südlichen Afrika. Clausthal Technical University, Diplomarbeit, Clausthal, Germany, p 96

    Google Scholar 

  • Wappler T (2000a) Triassische Insekten aus dem Karoo-Becken im südlichen Afrika. Arbeit Paläontol. Hannover 28:68–84

    Google Scholar 

  • Wappler T (2000b) New Orthoptera and Grylloblattida (Insecta) from the Upper Triassic (Carnian) Karoo-System in southern Africa. First Internat Meet Paleoarthropodology (Ribeirão Preto, Brazil), pp. 34–35

    Google Scholar 

  • Wappler T (2001) Haglidae (Insecta: Orthoptera) aus der obertriassischen Molteno-Formation im südlichen Afrika. N Jb Geol Paläontol Abh 222:329–352

    Google Scholar 

  • Wappler T, Kustatscher E, Dellantonio E (2015) Plant–insect interactions from Middle Triassic (late Ladinian) of Monte Agnello (Dolomites, NItaly)―initial pattern and response to abiotic environmental perturbations. PeerJ 3:e921. https://doi.org/10.7717/peerj.921

    Article  Google Scholar 

  • Watt MN (1920) The leaf-mining insects of New Zealand. Part 1―the genus Parectopa (Lepidoptera). Trans Proc N Z Inst 52:439–466, pl 30

    Google Scholar 

  • Webb JA (1982) Triassic species of Dictyophyllum from eastern Australia. Alcheringa 6:79–81

    Article  Google Scholar 

  • Weber H (1930) Biologie der Hemipteren: Eine Naturgeschichte der Schnabelkerfe. Julius Springer, Berlin, p 543

    Book  Google Scholar 

  • Weintraub JD, Cook MA, Scoble MJ (1994) Notes on the systematics and ecology of a fern-feeding looper moth, Entomopteryx amputata (Lepidoptera: Geometridae). Malayan. Nat J 47:355–367

    Google Scholar 

  • Welke G (1959) Zur Kenntnis von Strongylogaster xanthoceros (Steph.) und Strongylogaster lineata (Christ) und ihrer Parasiten. Beitr Entomol 9:233–292

    Google Scholar 

  • Wesenberg-Lund G (1913) Fortpflanzungsverhältnisse: Paarung und Eiblage der Süsswasserinsekten. Fortschr Naturwiss Forsch 8:161–286

    Google Scholar 

  • Wesenberg-Lund G (1943) Biologie der Süsswasserinsekten. J. Springer, Berlin, Vienna, p 682

    Book  Google Scholar 

  • Westphal E (1977) Morphogenese, ultrastructure et etiologie de quelques galles d’eriophyes (Acariens). Marcellia 39:193–375

    Google Scholar 

  • Westphal E (1992) Cecidogenesis and resistance phenomena in mite-induced galls. In: Shorthouse JD, Rohfritsch O (eds) Biology of insectinduced galls. Oxford University Press, New York, pp 141–156

    Google Scholar 

  • Westphal E, Manson DCM (1996) Feeding effects on host plants: gall formation and other distortions. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites—their biology, natural enemies and control. Elsevier Science B.V, Amsterdam, pp 231–242

    Chapter  Google Scholar 

  • Whitfield JB, Kjer KM (2008) Ancient rapid radiations of insects: challenges for phylogenetic analysis. Annu Rev Entomol 53:449–472

    Article  Google Scholar 

  • Wilf P, Labandeira CC (1999) Response of plant-insect associations to Paleocene–Eocene warming. Science 284:2153–2156

    Article  Google Scholar 

  • Wilf P, Labandeira CC, Johnson KR, Coley PD, Cutter AD (2001) Insect herbivory, plant defense, and early Cenozoic climate change. Proc Natl Acad Sci U S A 98:6221–6226

    Article  Google Scholar 

  • Wilf P, Labandeira CC, Johnson KR, Ellis B (2006) Decoupled plant and insect diversity after the end-Cretaceous extinction. Science 313:1112–1115

    Article  Google Scholar 

  • Wilson J (1980) Macroscopic features of wind damage to leaves of Acer pseudoplatanus L. and its relationship with season, leaf age, and windspeed. Am Bot 46:303–311

    Article  Google Scholar 

  • Windsor D, Ness J, Gomez LD, Jolivet PH (1999) Species of Aulacoscelis Duponchel and Chevrolat (Chrysomelidae) and Nomotus Gorham (Languriidae) feed on fronds of Central American cycads. Coleopt Bull 53:217–231

    Google Scholar 

  • Yang E, Xu L, Yang Y, Zhang X, Xiang M, Wang C, An Z, Liu X (2012) Origin and evolution of carnivorism in the Ascomycota (fungi). Proc Natl Acad Sci U S A 109:10960–10965

    Article  Google Scholar 

  • Yothers MA (1934) Biology and control of tree hoppers injurious to fruit trees in the Pacific Northwest. US Dept Agric Tech Bull 402:1–45

    Google Scholar 

  • Zeuner FE (1961) A Triassic insect fauna from the Molteno beds of South Africa. Proc 11th Congr Entomol 1:303–306

    Google Scholar 

  • Zherikhin VV (2002) Ecological history of the terrestrial insects. In: Rasnitsyn AP, Quicke DLJ (eds) History of insects. Kluwer, Dordrecht, pp 331–388

    Google Scholar 

  • Zinovjev AG (2006) Taxonomic position and biology of Potania myrtillifoliae Benson, 1960 (Hymenoptera: Tenthredinidae). In: Blank SM, Schmidt S, Taeger A (eds) Recent sawfly research: synthesis and prospects. Goecke & Evers, Keltern, pp 139–142

    Google Scholar 

Download references

Acknowledgements

Thanks go to Finnegan Marsh for formatting Figs. 14.1 to 14.13. Pfarelo (Grace) Tshivhandekano provided the images from which Fig. 14.5 to 14.10 were assembled. Jennifer Wood rendered and colorized Figs. 14.11 and 14.12. We thank an anonymous reviewer for constructive comments and Larry Tanner for inviting this contribution. This work is contribution 320 of the Evolution of Terrestrial Ecosystems consortium at the National Museum of Natural History, in Washington, D.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conrad C. Labandeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Labandeira, C.C., Anderson, J.M., Anderson, H.M. (2018). Expansion of Arthropod Herbivory in Late Triassic South Africa: The Molteno Biota, Aasvoëlberg 411 Site and Developmental Biology of a Gall. In: Tanner, L. (eds) The Late Triassic World. Topics in Geobiology, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-68009-5_14

Download citation

Publish with us

Policies and ethics