Skip to main content

Platform-Adaptive High-Throughput Surveillance Video Condensation on Heterogeneous Processor Clusters

  • Conference paper
  • First Online:
Advanced Parallel Processing Technologies (APPT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10561))

Included in the following conference series:

  • 781 Accesses

Abstract

Directly browsing and analyzing numerous surveillance videos is inefficient for human operators. Video condensation is a technical solution to fast video browsing. On the one hand, traditional video condensation methods that skip frames using simple strategies may lose some important frames. On the other hand, the methods that rearrange frame contexts improve the browsing efficiency, but are not easy to be accelerated using the data processing centers with various hardware configurations. In this paper, we propose a platform-adaptive video condensation system based on change detection, which is easy to accelerate and keeps important frames accurately. To take full advantage of hardware acceleration, we implement each module of the proposed system using multithreading and GPU acceleration, and then further accelerate the system by exploiting the task-level parallelism. We solve the computational resources assignment problem via local search method. To be platform-adaptive, the combination of module using different hardware acceleration are compared to choose the optimal combination to make full use of the computational resources. Detailed experiments are conducted to validate the accuracy of the proposed system, the efficiency of the platform-adaptive mechanism and the high throughput performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that speedup is hardware dependent, given better hardware may lead to better speedup performance. The overall speedup for platform GTX750Ti is 12.6.

References

  1. O’callaghan, D., Lew, E.L.: Method and apparatus for video on demand with fast forward, reverse and channel pause, U.S. Patent 5 477 263, 19 December 1995

    Google Scholar 

  2. Smith, M.A.: Video skimming and characterization through the combination of image and language understanding techniques. In: Proceedings of the IEEE Conference on CVPR, 1997, pp. 775–781

    Google Scholar 

  3. Petrovic, N., Jojic, N., Huang, T.S.: Adaptive video fast forward. Multimed. Tools Appl. 26(3), 327–344 (2005)

    Article  Google Scholar 

  4. Hoferlin, B., Hoferlin, M., Weiskopf, D., Heidemann, G.: Information-based adaptive fast-forward for visual surveillance. Multimed. Tools Appl. 55(1), 127–150 (2011)

    Article  Google Scholar 

  5. Kang, H.-W., Chen, X.-Q., Matsushita, Y., Tang, X.: Space-time video montage. In: Proceedings of the IEEE Conference on CVPR, pp. 1331–1338 (2006)

    Google Scholar 

  6. Li, Z., Ishwar, P., Konrad, J.: Video condensation by ribbon carving. IEEE Trans. Image Process. 18(11), 2572–2583 (2009)

    Article  MathSciNet  Google Scholar 

  7. Pritch, Y., Rav-Acha, A., Peleg, S.: Nonchronological video synopsis and indexing. IEEE Trans. Pattern Anal. Mach. Intell. 30(11), 1971–1984 (2008)

    Article  Google Scholar 

  8. Pritch, Y., Rav-Acha, A., Gutman, A., Peleg, S.: Webcam synopsis: peeking around the world. In: Proceedings of the IEEE ICCV, pp. 1–8 (2007)

    Google Scholar 

  9. Rav-Acha, A., Pritch, Y., Peleg, S.: Making a long video short: Dynamic video synopsis. In: Proceedings of the IEEE Conference on CVPR, pp. 435–441 (2006)

    Google Scholar 

  10. Zhu, J., Feng, S., Yi, D., Liao, S., Lei, Z., Li, S.Z.: High performance video condensation system, IEEE Trans. Circuits Syst. Video Technol. (2014)

    Google Scholar 

  11. Huang, C.-R., Chung, P.-C., Yang, D.-K., Chen, H.-C., Huang, G.-J.: Maximum a posteriori probability estimation for online surveillance video synopsis. IEEE Trans. Circuits Syst. Video Technol. 24(8), 1417–1429 (2014)

    Article  Google Scholar 

  12. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stutzle, T.: ParamILS: an automatic algorithm configuration framework. J. Artif. Intell. Res. 36(1), 267–306 (2009)

    MATH  Google Scholar 

  13. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algorithms selection for SAT. J. Artif. Intell. Res. 32, 565–606 (2008)

    MATH  Google Scholar 

  14. Wren, C.R., Azarbayejani, A., Darrell, T., Pentland, A.P.: Pfinder: real-time tracking of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 780–785 (1997)

    Article  Google Scholar 

  15. Koller, D., Weber, J., Huang, T., Malik, J., Ogasawara, G., Rao, B., Russel, S.: Toward robust automatic traffic scene analysis in real-time. In: Proceedings of the IEEE ICPR, pp. 126–131 (1994)

    Google Scholar 

  16. Friedman, N., Russell, S.: Image segmentation in video sequences: a probabilistic approach, In: Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence, pp. 175–181 (1997)

    Google Scholar 

  17. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: Proceedings of the IEEE CVPR, pp. 246–252 (1999)

    Google Scholar 

  18. Hayman, E., Eklundh, J.: Statistical background subtraction for a mobile observer. In: Proceedings of the IEEE ICCV, pp. 67–74 (2003)

    Google Scholar 

  19. KaewTraKulPong, P., Bowden, R.: An improved adaptive background mixture model for real-time tracking with shadow detection. In: Proceedings of the European Workshop Advanced Video-Based Surveillance Systems, pp. 135–144 (2002)

    Google Scholar 

  20. Zivkovic, Z., der Heijden, E.: Recursive unsupervised learning of finite mixture models, IEEE Trans. Pattern Anal. Mach. Intell. 26(5) (2004)

    Google Scholar 

  21. Zivkovic, Z.: Improved adaptive gaussian mixture model for background subtraction. In: Proceedings of the IEEE ICPR, pp. 28–31 (2004)

    Google Scholar 

  22. Dubuisson, M.P., Jain, A.K.: Contour extraction of moving objects in complex outdoor scenes. Int. J. Comput. Vis. 14(1), 83–105 (1995)

    Article  Google Scholar 

  23. Lipton, A.J., Fujiyoshi, H., Patil, R.S.: Moving target classification and tracking from real-time video. In: Proceedings of the IEEE Workshop on Applications of Computer Vision, pp. 8–14 (1998)

    Google Scholar 

  24. Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Comput. Vis. Graph. Image Process. 30(1), 32–46 (1985)

    Article  MATH  Google Scholar 

  25. Teh, C.H., Chin, R.T.: On the detection of dominant points on digital curve. IEEE Trans. Pattern Anal. Mach. Intell. 11(8), 859–872 (1989)

    Article  Google Scholar 

  26. Nvidia CUDA Programming Guide 2.0. http://www.nvidia.com/object/cuda_develop.html

  27. Podlozhnyuk, V.: “Image Convolution with CUDA,” Nvidia CUDA 2.0 SDK convolution Speparable document

    Google Scholar 

  28. Goyette, N., Jodoin, P.-M., Porikli, F., Konrad, J., Ishwar, P.: Changedetection.net: a new change detection benchmark dataset. In: Proceedings of the IEEE Workshop on Change Detection (CDW-2012) at CVPR-2012, Providence, RI, 16–21 June 2012

    Google Scholar 

  29. Wang, Y., Dou, Y., Guo, S., Lei, Y., Zou, D.: CPU–GPU hybrid parallel strategy for cosmological simulations. Concurr. Comput. Pract. Exp. 26(3), 748–765 (2014)

    Article  Google Scholar 

  30. Lei, G., Dou, Y., Wan, W., Xia, F., Li, R., Ma, M., Zou, D.: CPU-GPU hybrid accelerating the Zuker algorithm for RNA secondary structure prediction applications, BMC Genomics 13(Suppl 1) (2012)

    Google Scholar 

  31. Chandra, R.: Parallel Programming in OpenMP. Morgan Kaufmann, Burlington (2001)

    Google Scholar 

  32. Hermann, E., Raffin, B., Faure, F., et al.: Multi-GPU and multi-CPU parallelization for interactive physics simulations. In: Euro-Par 2010-Parallel Processing, pp. 235–246 (2010)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Chinese National Natural Science Foundation Projects #U1435219, #61402507, #61572515, #61402499.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Qiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Qiao, P., Li, T., Dou, Y., Lei, Y., Luo, H., Jin, C. (2017). Platform-Adaptive High-Throughput Surveillance Video Condensation on Heterogeneous Processor Clusters. In: Dou, Y., Lin, H., Sun, G., Wu, J., Heras, D., Bougé, L. (eds) Advanced Parallel Processing Technologies. APPT 2017. Lecture Notes in Computer Science(), vol 10561. Springer, Cham. https://doi.org/10.1007/978-3-319-67952-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67952-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67951-8

  • Online ISBN: 978-3-319-67952-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics