Skip to main content

Neuropathology of Cerebral Palsy

  • Chapter
  • First Online:
Cerebral Palsy

Abstract

The clinical picture of cerebral palsy (CP) develops subsequently to hypoxic/ischaemic or inflammatory/toxic injury of the developing central nervous system in the pre-, peri- or postnatal period. The distribution of lesions reflects peculiarities of foetal vascular development, increased vulnerabilities of developing cells or supply territories of the basal cerebral arteries. The present chapter focuses on pathophysiological aspects and the neuropathological alterations observed in CP. The pathologies described comprise (a) periventricular leukoencephalopathy which is predominantly seen in preterm births and may impress as small infarcts or gliotic foci, (b) germinal/ventricular haemorrhage mainly affecting preterm neonates presumably resulting from hypoxic damage to the endothelium of immature vessels in the germinal layer, (c) por-/hydranencephaly developing in the 5th gestational month following systemic hypotension, (d) pontosubicular neuronal apoptotic necrosis observed between the 30th gestational week and the 2nd postnatal month after severe systemic hypoxia, (e) cortical border zone infarction/ulegyria, (f) territorial infarction due to occlusion of a basal cerebral artery in mature neonates up to infant age, (g) marbled state referring to bilaterally abnormally myelinated scars in the basal ganglia and thalami due to lesioning in the perinatal period until an age of 6–9 months, and (h) multicystic encephalopathy, a global hemispheric necrosis developing postnatally up to an age of 18 months. The neuropathological findings particularly underline the importance of localization, extent and timing of brain injury for the clinical picture, whereas data on brain development may indicate possible time windows for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Rei M, Ayres-de-Campos D, Bernardes J. Neurological damage arising from intrapartum hypoxia/acidosis. Best Pract Res Clin Obstet Gynaecol. 2016;30:79–86.

    Article  CAS  PubMed  Google Scholar 

  2. Raybaud C. Normal and abnormal embryology and development of the intracranial vascular system. Neurosurg Clin N Am. 2010;21:399–426.

    Article  PubMed  Google Scholar 

  3. Nelson KB, Lynch JK. Stroke in newborn infants. Lancet Neurol. 2004;3:150–8.

    Article  PubMed  Google Scholar 

  4. Rezaie P, Dean A. Periventricular leukomalacia, inflammation and white matter lesions within the developing nervous system. Neuropathology. 2002;22:106–32.

    Article  PubMed  Google Scholar 

  5. Nikas I, Dermentzoglou V, Theofanopoulou M, Theodoropoulos V. Parasagittal lesions and ulegyria in hypoxic-ischemic encephalopathy: neuroimaging findings and review of the pathogenesis. J Child Neurol. 2008;23:51–8.

    Article  PubMed  Google Scholar 

  6. Friede RL, editor. Developmental neuropathology. Berlin: Springer; 1989.

    Google Scholar 

  7. Folkerth RD. Neuropathologic substrate of cerebral palsy. J Child Neurol. 2005;20:940–9.

    Article  PubMed  Google Scholar 

  8. Hambleton G, Wigglesworth JS. Origin of intraventricular haemorrhage in the preterm infant. Arch Dis Child. 1976;51:651–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Strigini FA, Cioni G, Canapicchi R, et al. Fetal intracranial hemorrhage: is minor maternal trauma a possible pathogenetic factor? Ultrasound Obstet Gynecol. 2001;18:335–42.

    Article  CAS  PubMed  Google Scholar 

  10. Towbin A. Cerebral intraventricular hemorrhage and subependymal matrix infarction in the fetus and premature newborn. Am J Pathol. 1968;52:121–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ross JJ, Dimmette RM. Subependymal cerebral hemorrhage in infancy. Am J Dis Child. 1965;110:531–42.

    CAS  PubMed  Google Scholar 

  12. Norman MG, O’Kusky JR. The growth and development of microvasculature in human cerebral cortex. J Neuropathol Exp Neurol. 1986;45:222–32.

    Article  CAS  PubMed  Google Scholar 

  13. du Plessis AJ. Cerebral blood flow and metabolism in the developing fetus. Clin Perinatol. 2009;36:531–48.

    Article  PubMed  Google Scholar 

  14. Volpe JJ. Neurobiology of periventricular leukomalacia in the premature infant. Pediatr Res. 2001;50:553–62.

    Article  CAS  PubMed  Google Scholar 

  15. Coq JO, Delcour M, Massicotte VS, et al. Prenatal ischemia deteriorates white matter, brain organization, and function: implications for prematurity and cerebral palsy. Dev Med Child Neurol. 2016;58(Suppl 4):7–11.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Banker BQ, Larroche J-C. Periventricular leukomalacia in infancy. A form of neonatal anoxic encephalopathy. Arch Neurol. 1962;7:386–410.

    Article  CAS  PubMed  Google Scholar 

  17. Shevell MI, Majnemer A, Morin I. Etiologic yield of cerebral palsy: a contemporary case series. Pediatr Neurol. 2003;28:352–9.

    Article  PubMed  Google Scholar 

  18. Kostović I, Judaš M. Prolonged coexistence of transient and permanent circuitry elements in the developing cerebral cortex of fetuses and preterm infants. Dev Med Child Neurol. 2006;48:388–93.

    Article  PubMed  Google Scholar 

  19. Babcock MA, Kostova FV, Ferriero DM, et al. Injury to the preterm brain and cerebral palsy: clinical aspects, molecular mechanisms, unanswered questions, and future research directions. J Child Neurol. 2009;24:1064–84.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Volpe JJ. Cerebral white matter injury of the premature infant-more common than you think. Pediatrics. 2003;112:176–80.

    Article  PubMed  Google Scholar 

  21. Faix RG, Donn SM. Association of septic shock caused by early-onset group B streptococcal sepsis and periventricular leukomalacia in the preterm infant. Pediatrics. 1985;76:415–9.

    CAS  PubMed  Google Scholar 

  22. Yoon BH, Park CW, Chaiworapongsa T. Intrauterine infection and the development of cerebral palsy. BJOG. 2003;110(Suppl 20):124–7.

    Article  PubMed  Google Scholar 

  23. Burke C, Gobe G. Pontosubicular apoptosis (“necrosis”) in human neonates with intrauterine growth retardation and placental infarction. Virchows Arch. 2005;446:640–5.

    Article  PubMed  Google Scholar 

  24. Friel KM, Chakrabarty S, Martin JH. Pathophysiological mechanisms of impaired limb use and repair strategies for motor systems after unilateral injury of the developing brain. Dev Med Child Neurol. 2013;55(Suppl 4):27–31.

    Article  PubMed  Google Scholar 

  25. Gunn AJ, Bennet L. Fetal hypoxia insults and patterns of brain injury: insights from animal models. Clin Perinatol. 2009;36:579–93.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Inder T, Neil J, Yoder B, Rees S. Patterns of cerebral injury in a primate model of preterm birth and neonatal intensive care. J Child Neurol. 2005;20:965–7.

    Article  PubMed  Google Scholar 

  27. Chua CO, Chahboune H, Braun A, et al. Consequences of intraventricular hemorrhage in a rabbit pup model. Stroke. 2009;40:3369–77.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rong G, Weijian H, Yafeng D, et al. Brain injury caused by chronic fetal hypoxemia is mediated by inflammatory cascade activation. Reprod Sci. 2010;17:540–8.

    Article  Google Scholar 

  29. Emerson P, Fujimura M, Howat P, et al. Timing of intraventricular haemorrhage. Arch Dis Child. 1997;52:183–7.

    Article  Google Scholar 

  30. Leech RW, Olsen MI, Alvord EF Jr. Neuropathologic features of idiopathic respiratory distress syndrome. Arch Pathol Lab Med. 1979;103:341–3.

    CAS  PubMed  Google Scholar 

  31. Aida N, Nishimura G, Hachiya Y, et al. MR imaging of perinatal brain damage: comparison of clinical outcome with initial and follow-up MR findings. Am J Neuroradiol. 1998;19:1909–021.

    CAS  PubMed  Google Scholar 

  32. Glasier CM, Garcia-Thomas GI, Allison JW. Superficial CNS siderosis in the newborn. MR diagnosis. Pediatr Radiol. 1999;29:76–7.

    Article  CAS  PubMed  Google Scholar 

  33. Sohma O, Mito T, Mizuguchi M, Takashima S. The prenatal age critical for the development of the pontosubicular necrosis. Acta Neuropathol. 1995;90:7–10.

    Article  CAS  PubMed  Google Scholar 

  34. Nakamura Y, Nakashima T, Fukuda S, et al. Hypoxic-ischemic brain lesions found in asphyxiating neonates. Acta Pathol Jpn. 1986;36:551–63.

    CAS  PubMed  Google Scholar 

  35. Brück Y, Brück W, Kretzschmar HA, Lassmann H. Evidence for neuronal apoptosis in pontosubicular neuron necrosis. Neuropathol Appl Neurobiol. 1996;22:23–9.

    Article  PubMed  Google Scholar 

  36. Stadelmann C, Mews I, Srinivasan A, et al. Expression of cell death-associated proteins in neuronal apoptosis associated with pontosubicular neuron necrosis. Brain Pathol. 2001;11:273–81.

    Article  CAS  Google Scholar 

  37. Armstrong D, Norman MG. Periventricular leucomalacia in neonates. Complications and sequelae. Arch Dis Child. 1974;49:367–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Norman RM. État marbré of the thalamus following birth injury. Brain. 1949;72:83–8.

    Article  CAS  PubMed  Google Scholar 

  39. Benda CE. The late effects of cerebral birth injuries. Medicine. 1945;24:71–110.

    Article  Google Scholar 

  40. Norman MG. On the morphogenesis of ulegyria. Acta Neuropathol. 1981;53:331–2.

    Article  CAS  PubMed  Google Scholar 

  41. Anton G. Ueber die Beteiligung der basalen Gehirnganglien bei Bewegungsstoerungen und insbesondere bei der Chorea; mit Demonstration von Gehirnschnitten. Wien Klein Wochenschr. 1893;6:859–61.

    Google Scholar 

  42. Friede RL, Schachenmayr W. Early stages of status marmoratus. Acta Neuropathol. 1977;38:123–7.

    Article  CAS  PubMed  Google Scholar 

  43. Borit A, Herndon RM. The fine structure of plaques fibromyeliniques in ulegyria and in status marmoratus. Acta Neuropathol. 1970;14:304–11.

    Article  CAS  PubMed  Google Scholar 

  44. Araki S, Hayashi M, Suzuki K, et al. Immunohistochemical evaluation of the marbled state in childhood hypoxic encephalopathy. Acta Neuropathol. 1999;98:257–61.

    Article  CAS  PubMed  Google Scholar 

  45. Norman MG. Bilateral encephaloclastic lesions in a 26 week gestation fetus: effect on neuroblast migration. Can J Neurol Sci. 1980;7:191–4.

    Article  CAS  PubMed  Google Scholar 

  46. Marin-Padilla M. Developmental neuropathology and impact of perinatal brain damage. II: White matter lesions of the neocortex. J Neuropathol Exp Neurol. 1997;56:219–35.

    Article  CAS  PubMed  Google Scholar 

  47. Sie LT, van der Knaap MS, Oosting J, et al. MR patterns of hypoxic-ischemic brain damage after prenatal, perinatal or postnatal asphyxia. Neuropediatrics. 2000;31:128–36.

    Article  CAS  PubMed  Google Scholar 

  48. Sheth RD, Bodensteiner JB, Riggs JE, Schochet SS Jr. Differential involvement of the brain in neonatal asphyxia: a pathogenic explanation. J Child Neurol. 1995;10:464–6.

    Article  CAS  PubMed  Google Scholar 

  49. Blennow M, Hagberg H, Rosengren L. Glial fibrillary acidic protein in the cerebrospinal fluid: a possible indicator of prognosis in full-term asphyxiated newborn infants? Pediatr Res. 1995;37:260–4.

    Article  CAS  PubMed  Google Scholar 

  50. Lindenberg R, Swanson PD. “Infantile hydranencephaly” - a report of five cases of infarction of both cerebral hemispheres in infancy. Brain. 1967;90:839–50.

    Article  CAS  PubMed  Google Scholar 

  51. Rivkin MJ. Hypoxic-ischemic brain injury in the term newborn. Neuropathology, clinical aspects, and neuroimaging. Clin Perinatol. 1997;24:607–25.

    CAS  PubMed  Google Scholar 

  52. Ford L, de Courten-Myers GM, Mandybur T, Myers RE. Cerebral hemiatrophy-correlation of human with animal experimental data. Pediatr Neurosci. 1988;14:114–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hagel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Hagel, C. (2018). Neuropathology of Cerebral Palsy. In: Panteliadis, C. (eds) Cerebral Palsy. Springer, Cham. https://doi.org/10.1007/978-3-319-67858-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67858-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67857-3

  • Online ISBN: 978-3-319-67858-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics