Skip to main content

Correlation Between Clustering and Degree in Affiliation Networks

  • Conference paper
  • First Online:
Algorithms and Models for the Web Graph (WAW 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10519))

Included in the following conference series:

Abstract

We are interested in the probability that two randomly selected neighbors of a random vertex of degree (at least) k are adjacent. We evaluate this probability for a power law random intersection graph, where each vertex is prescribed a collection of attributes and two vertices are adjacent whenever they share a common attribute. We show that the probability obeys the scaling \(k^{-\delta }\) as \(k\rightarrow +\infty \). Our results are mathematically rigorous. The parameter \(0\le \delta \le 1\) is determined by the tail indices of power law random weights defining the links between vertices and attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aleškevičienė, A., Leipus, R., Šiaulys, J.: Tail behavior of random sums under consistent variation with applications to the compound renewal risk model. Extremes 11, 261–279 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bloznelis, M.: Degree and clustering coefficient in sparse random intersection graphs. Ann. Appl. Probab. 23, 1254–1289 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bloznelis, M., Damarackas, J.: Degree distribution of an inhomogeneous random intersection graph. Electron. J. Comb. 20(3), \(\#\)P3 (2013)

    Google Scholar 

  4. Bloznelis, M., Kurauskas, V.: Clustering coefficient of random intersection graphs with infinite degree variance. Internet Math. (2017)

    Google Scholar 

  5. Bloznelis, M., Godehardt, E., Jaworski, J., Kurauskas, V., Rybarczyk, K.: Recent progress in complex network analysis: models of random intersection graphs. In: Lausen, B., Krolak-Schwerdt, S., Böhmer, M. (eds.) Data Science, Learning by Latent Structures, and Knowledge Discovery. SCDAKO, pp. 69–78. Springer, Heidelberg (2015). doi:10.1007/978-3-662-44983-7_6

    Google Scholar 

  6. Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Pseudofractal scale-free web. Phys. Rev. E. 65, 066122 (2002)

    Article  Google Scholar 

  7. Eckmann, J.-P., Moses, E.: Curvature of co-links uncovers hidden thematic layers in the world wide web. PNAS 99, 5825–5829 (2002)

    Article  MathSciNet  Google Scholar 

  8. Foudalis, I., Jain, K., Papadimitriou, C., Sideri, M.: Modeling social networks through user background and behavior. In: Frieze, A., Horn, P., Prałat, P. (eds.) WAW 2011. LNCS, vol. 6732, pp. 85–102. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21286-4_8

    Chapter  Google Scholar 

  9. Godehardt, E., Jaworski, J.: Two models of random intersection graphs and their applications. Electron. Notes Discrete Math. 10, 129–132 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Karoński, M., Scheinerman, E.R., Singer-Cohen, K.B.: On random intersection graphs: the subgraph problem. Comb. Probab. Comput. 8, 131–159 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mitzenmacher, M., Upfal, E.: Probability and Computing. Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  12. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001)

    Article  Google Scholar 

  13. Ravasz, L., Barabási, A.L.: Hierarchical organization in complex networks. Phys. Rev. E 67, 026112 (2003)

    Article  MATH  Google Scholar 

  14. Steele, J.M.: Le Cam’s inequality and Poisson approximations. Am. Math. Mon. 101, 48–54 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Vázquez, A., Pastor-Satorras, R., Vespignani, A.: Large-scale topological and dynamical properties of internet. Phys. Rev. E 65, 066130 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mindaugas Bloznelis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bloznelis, M., Petuchovas, J. (2017). Correlation Between Clustering and Degree in Affiliation Networks. In: Bonato, A., Chung Graham, F., Prałat, P. (eds) Algorithms and Models for the Web Graph. WAW 2017. Lecture Notes in Computer Science(), vol 10519. Springer, Cham. https://doi.org/10.1007/978-3-319-67810-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67810-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67809-2

  • Online ISBN: 978-3-319-67810-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics