Skip to main content

Moment-Based Parameter Estimation in Binomial Random Intersection Graph Models

  • Conference paper
  • First Online:
Algorithms and Models for the Web Graph (WAW 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10519))

Included in the following conference series:

Abstract

Binomial random intersection graphs can be used as parsimonious statistical models of large and sparse networks, with one parameter for the average degree and another for transitivity, the tendency of neighbours of a node to be connected. This paper discusses the estimation of these parameters from a single observed instance of the graph, using moment estimators based on observed degrees and frequencies of 2-stars and triangles. The observed data set is assumed to be a subgraph induced by a set of \(n_0\) nodes sampled from the full set of n nodes. We prove the consistency of the proposed estimators by showing that the relative estimation error is small with high probability for \(n_0 \gg n^{2/3} \gg 1\). As a byproduct, our analysis confirms that the empirical transitivity coefficient of the graph is with high probability close to the theoretical clustering coefficient of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For number sequences \(f=f_\nu \) and \(g=g_\nu \) indexed by integers \(\nu \ge 1\), we denote \(f \sim g\) if \(f_\nu /g_\nu \rightarrow 1\) and \(f \ll g\) if \(f_\nu /g_\nu \rightarrow 0\) as \(\nu \rightarrow \infty \). The scale parameter is usually omitted.

  2. 2.

    subgraphs isomorphic to the graph \(K_3\) with \(V(K_3) = \{1,2,3\}\) and \(E(K_3) = \{12,13,23\}\).

  3. 3.

    subgraphs isomorphic to the graph \(S_2\) with \(V(S_2) = \{1,2,3\}\) and \(E(S_2) = \{12,13\}\).

  4. 4.

    For clarity, we write 12 and 123 as shorthands of the sets \(\{1,2\}\) and \(\{1,2,3\}\).

References

  1. Ball, F.G., Sirl, D.J., Trapman, P.: Epidemics on random intersection graphs. Ann. Appl. Probab. 24(3), 1081–1128 (2014). http://dx.doi.org/10.1214/13-AAP942

    Article  MathSciNet  MATH  Google Scholar 

  2. Bickel, P.J., Chen, A., Levina, E.: The method of moments and degree distributions for network models. Ann. Statist. 39(5), 2280–2301 (2011). http://dx.doi.org/10.1214/11-AOS904

    Article  MathSciNet  MATH  Google Scholar 

  3. Bloznelis, M.: The largest component in an inhomogeneous random intersection graph with clustering. Electron. J. Combin. 17(1), R110 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Bloznelis, M.: Degree and clustering coefficient in sparse random intersection graphs. Ann. Appl. Probab. 23(3), 1254–1289 (2013). http://dx.doi.org/10.1214/12-AAP874

    Article  MathSciNet  MATH  Google Scholar 

  5. Bloznelis, M., Kurauskas, V.: Clustering function: another view on clustering coefficient. J. Complex Netw. 4, 61–86 (2015)

    Article  MathSciNet  Google Scholar 

  6. Bloznelis, M., Leskelä, L.: Diclique clustering in a directed random graph. In: Bonato, A., Graham, F.C., Prałat, P. (eds.) WAW 2016. LNCS, vol. 10088, pp. 22–33. Springer, Cham (2016). doi:10.1007/978-3-319-49787-7_3

    Chapter  Google Scholar 

  7. Britton, T., Deijfen, M., Lagerås, A.N., Lindholm, M.: Epidemics on random graphs with tunable clustering. J. Appl. Probab. 45(3), 743–756 (2008). http://dx.doi.org/10.1239/jap/1222441827

    Article  MathSciNet  MATH  Google Scholar 

  8. Deijfen, M., Kets, W.: Random intersection graphs with tunable degree distribution and clustering. Probab. Eng. Inform. Sc. 23(4), 661–674 (2009). http://dx.doi.org/10.1017/S0269964809990064

    Article  MathSciNet  MATH  Google Scholar 

  9. Gleich, D.F., Owen, A.B.: Moment-based estimation of stochastic Kronecker graph parameters. Internet Math. 8(3), 232–256 (2012). http://projecteuclid.org/euclid.im/1345581012

    Article  MathSciNet  MATH  Google Scholar 

  10. Godehardt, E., Jaworski, J.: Two models of random intersection graphs and their applications. Electron. Notes Discr. Math. 10, 129–132 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  12. van der Hofstad, R.: Random Graphs and Complex Networks. Cambridge University Press, Cambridge (2017)

    Book  MATH  Google Scholar 

  13. Karoński, M., Scheinerman, E.R., Singer-Cohen, K.B.: On random intersection graphs: the subgraph problem. Combin. Probab. Comput. 8(1–2), 131–159 (1999). http://dx.doi.org/10.1017/S0963548398003459

    Article  MathSciNet  MATH  Google Scholar 

  14. Kolaczyk, E.D.: Statistical Analysis of Network Data. Springer, New York (2009)

    Book  MATH  Google Scholar 

  15. LagerĂĄs, A.N., Lindholm, M.: A note on the component structure in random intersection graphs with tunable clustering. Electron. J. Combin. 15(1), Note 10, 8 (2008). http://www.combinatorics.org/Volume_15/Abstracts/v15i1n10.html

  16. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003). http://dx.doi.org/10.1137/S003614450342480

    Article  MathSciNet  MATH  Google Scholar 

  17. Nikoletseas, S., Raptopoulos, C., Spirakis, P.G.: Maximum cliques in graphs with small intersection number and random intersection graphs. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 728–739. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32589-2_63

    Chapter  Google Scholar 

  18. Tsourakakis, C.E.: Fast counting of triangles in large real networks without counting: algorithms and laws. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 608–617, December 2008

    Google Scholar 

  19. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

Part of this work has been financially supported by the Emil Aaltonen Foundation, Finland. We thank Mindaugas Bloznelis for helpful discussions, and the two anonymous reviewers for helpful comments.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Karjalainen, J., Leskelä, L. (2017). Moment-Based Parameter Estimation in Binomial Random Intersection Graph Models. In: Bonato, A., Chung Graham, F., Prałat, P. (eds) Algorithms and Models for the Web Graph. WAW 2017. Lecture Notes in Computer Science(), vol 10519. Springer, Cham. https://doi.org/10.1007/978-3-319-67810-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67810-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67809-2

  • Online ISBN: 978-3-319-67810-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics