Skip to main content

Click Chemistry for Radionanomedicine Platform

  • Chapter
  • First Online:
Radionanomedicine

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 799 Accesses

Abstract

The emerging radionanomedicine has multifunctional and theranostic purposes. To fulfill these purposes, the radionanomedicine should achieve efficient and specific delivery of therapeutic agents by their multifunctionality with very low amount of nanomaterials used in vivo. Recent researches on radiolabeled micelle-encapsulated nanomaterials are promising for their efficacy and safety as one-step surface modification method. This one-step multifunctional approach to the nanoparticles is important to meet the challenges of manufacturing and is the basis for making the effective nano-platforms for disease-targeted imaging and therapy. Based on ‘click chemistry’ concept, great progress have been achieved in the field of radiochemistry and nanomedicine. Click chemistry can be used for the surface modification of nanomedicines, such as hydrophilization, target molecule ligation, therapeutic drug conjugation, and labeling sensor molecules including fluorescence dyes or radioisotopes. By the conventional step-by-step chemical modification method of nanomaterials, two or more combination of those modifications can hardly achieve practicability, because of the low yield of each step of the purification and modification. Another beauty of click chemistry for nanomedicine is the avoidance of harsh reaction condition, such as high/low pH, temperature, or reducing/oxidizing conditions, which result in the aggregation of nanomaterials or degradation of biomolecules. Numerous nanomedicine platforms have been proposed and used in in vitro assay, in vivo imaging, drug delivery, or theranostics. However, in considering manufacturing or commercialization of radionanomedicine platform , still there are much rooms to be improved. In this chapter, we focus on the current status for the ‘clickable’ nanomedicine platforms and how we can or will be able to reach the goal of clinical translation using this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.C. Kolb, M.G. Finn, K.B. Sharpless, Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 40(11), 2004–2021 (2001)

    Article  Google Scholar 

  2. H.K. He, C. Gao, Click chemistry on nano-surfaces. Curr. Org. Chem. 15(21), 3667–3691 (2011)

    Article  Google Scholar 

  3. J.P. Meyer, P. Adumeau, J.S. Lewis, B.M. Zeglis, Click chemistry and radiochemistry: the first 10 years. Bioconjuga. Chem. 27(12), 2791–2807 (2016)

    Article  Google Scholar 

  4. E.Y. Sun, L. Josephson, R. Weissleder, “Clickable” nanoparticles for targeted imaging. Mol. Imaging 5(2), 122–128 (2006)

    Article  Google Scholar 

  5. J.E. Hein, V.V. Fokin, Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides. Chem. Soc. Rev. 39(4), 1302–1315 (2010)

    Article  Google Scholar 

  6. N.J. Agard, J.A. Prescher, C.R. Bertozzi, A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of blomolecules in living systems. J. Am. Chem. Soc. 126(46), 15046–15047 (2004)

    Article  Google Scholar 

  7. M.L. Blackman, M. Royzen, J.M. Fox, Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J. Am. Chem. Soc. 130(41), 13518–13519 (2008)

    Article  Google Scholar 

  8. M. Pretze, M. Kuchar, R. Bergmann, J. Steinbach, J. Pietzsch, C. Mamat, An efficient bioorthogonal strategy using CuAAC click chemistry for radiofluorinations of SNEW peptides and the role of copper depletion. Chem. Med. Chem. 8(6), 935–945 (2013)

    Article  Google Scholar 

  9. H.L. Evans, L. Carroll, E.O. Aboagye, A.C. Spivey, Bioorthogonal chemistry for Ga-68 radiolabelling of DOTA-containing compounds. J. Label. Compd. Radiopharm. 57(4), 291–297 (2014)

    Article  Google Scholar 

  10. K. Kang, J. Park, E. Kim, Tetrazine ligation for chemical proteomics. Proteome. Sci. 15, 15 (2017)

    Article  Google Scholar 

  11. B. Dubertret, P. Skourides, D.J. Norris, V. Noireaux, A.H. Brivanlou, A. Libchaber, In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298(5599), 1759–1762 (2002)

    Article  ADS  Google Scholar 

  12. Y.K. Lee, J.M. Jeong, L. Hoigebazar, B.Y. Yang, Y.S. Lee, B.C. Lee et al., Nanoparticles modified by encapsulation of ligands with a long alkyl chain to affect multispecific and multimodal imaging. J. Nucl. Med. 53(9), 1462–1470 (2012)

    Article  Google Scholar 

  13. B.Y. Yang, S.H. Moon, S.R. Seelam, M.J. Jeon, Y.S. Lee, D.S. Lee et al., Development of a multimodal imaging probe by encapsulating iron oxide nanoparticles with functionalized amphiphiles for lymph node imaging. Nanomed. (Lond.) 10(12), 1899–1910 (2015)

    Article  Google Scholar 

  14. S.H. Moon, B.Y. Yang, Y.J. Kim, M.K. Hong, Y.S. Lee, D.S. Lee et al., Development of a complementary PET/MR dual-modal imaging probe for targeting prostate-specific membrane antigen (PSMA). Nanomedicine 12(4), 871–879 (2016)

    Article  Google Scholar 

  15. H.J. Seo, S.H. Nam, H.J. Im, J.Y. Park, J.Y. Lee, B. Yoo et al., Rapid hepatobiliary excretion of micelle-encapsulated/radiolabeled upconverting nanoparticles as an integrated form. Sci. Rep. 5, 15685 (2015)

    Article  ADS  Google Scholar 

  16. Y. Matsumura, H. Maeda, A new concept for macromolecular therapeutics in cancer-chemotherapy—mechanism of tumoritropic accumulation of proteins and the antitumor agent Smancs. Cancer Res. 46(12), 6387–6392 (1986)

    Google Scholar 

  17. F. Danhier, To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Control Release 244, 108–121 (2016)

    Article  Google Scholar 

  18. H. Maeda, Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv. Drug Deliver. Rev. 91, 3–6 (2015)

    Article  ADS  Google Scholar 

  19. M.K. Yu, J. Park, S. Jon, Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2(1), 3–44 (2012)

    Article  Google Scholar 

  20. G. Gasparini, P.C. Brooks, E. Biganzoli, P.B. Vermeulen, E. Bonoldi, L.Y. Dirix et al., Vascular integrin alpha(v)beta(3): a new prognostic indicator in breast cancer. Clin. Cancer Res. 4(11), 2625–2634 (1998)

    Google Scholar 

  21. X.F. He, M.H. Na, J.S. Kim, G.Y. Lee, J.Y. Park, A.S. Hoffman et al., A novel peptide probe for imaging and targeted delivery of liposomal doxorubicin to lung tumor. Mol. Pharmaceut. 8(2), 430–438 (2011)

    Article  Google Scholar 

  22. E.A. Murphy, B.K. Majeti, L.A. Barnes, M. Makale, S.M. Weis, K. Lutu-Fuga et al., Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc. Natl. Acad. Sci. U.S.A. 105(27), 9343–9348 (2008)

    Article  ADS  Google Scholar 

  23. H.Y. Lee, Z. Li, K. Chen, A.R. Hsu, C.J. Xu, J. Xie et al., PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)—conjugated radiolabeled iron oxide nanoparticles. J. Nucl. Med. 49(8), 1371–1379 (2008)

    Article  Google Scholar 

  24. D. Arosio, L. Manzoni, E.M.V. Araldi, C. Scolastico, Cyclic RGD functionalized gold nanoparticles for tumor targeting. Bioconjug. Chem. 22(4), 664–672 (2011)

    Article  Google Scholar 

  25. D.R. Vera, A.M. Wallace, C.K. Hoh, R.F. Mattrey, A synthetic macromolecule for sentinel node detection: Tc-99 m-DTPA-mannosyl-dextran. J. Nucl. Med. 42(6), 951–959 (2001)

    Google Scholar 

  26. J.M. Jeong, M.K. Hong, Y.J. Kim, J. Lee, J.H. Kang, D.S. Lee et al., Development of Tc-99 m-neomannosyl human serum albumin (Tc-99 m-MSA) as a novel receptor binding agent for sentinel lymph node imaging. Nucl. Med. Commun. 25(12), 1211–1217 (2004)

    Article  Google Scholar 

  27. S.P. Lee, H.J. Im, S. Kang, S.J. Chung, Y.S. Cho, H. Kang et al., Noninvasive imaging of myocardial inflammation in myocarditis using Ga-68-tagged mannosylated human serum albumin positron emission tomography. Theranostics 7(2), 413–424 (2017)

    Article  Google Scholar 

  28. Z.Y. Shen, W. Wei, H. Tanaka, K. Kohama, G.H. Ma, T. Dobashi et al., A galactosamine-mediated drug delivery carrier for targeted liver cancer therapy. Pharmacol. Res. 64(4), 410–419 (2011)

    Article  Google Scholar 

  29. E.M. Kim, H.J. Jeong, I.K. Park, C.S. Cho, H.B. Moon, D.Y. Yu et al., Asialoglycoprotein receptor targeted gene delivery using galactosylated polyethylenimine-graft-poly(ethylene glycol): in vitro and in vivo studies. J. Control Release 108(2–3), 557–567 (2005)

    Article  Google Scholar 

  30. C.M. Lee, H.J. Jeong, E.M. Kim, D.W. Kim, S.T. Lim, H.T. Kim et al., Superparamagnetic iron oxide nanoparticles as a dual imaging probe for targeting hepatocytes in vivo. Magn. Reson. Med. 62(6), 1440–1446 (2009)

    Article  Google Scholar 

  31. H.S. Yoo, T.G. Park, Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate. J. Control Release 100(2), 247–256 (2004)

    Article  Google Scholar 

  32. J. Lu, M. Liong, Z.X. Li, J.I. Zink, F. Tamanoi, Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 6(16), 1794–1805 (2010)

    Article  Google Scholar 

  33. T. Maurer, M. Eiber, M. Schwaiger, J.E. Gschwend, Current use of PSMA—PET in prostate cancer management. Nat. Rev. Urol. 13(4), 226–235 (2016)

    Article  Google Scholar 

  34. M. Eder, M. Schafer, U. Bauder-Wust, W.E. Hull, C. Wangler, W. Mier et al., Ga-68-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug. Chem. 23(4), 688–697 (2012)

    Article  Google Scholar 

  35. S.S. Chandran, S.R. Banerjee, R.C. Mease, M.G. Pomper, S.R. Denmeade, Characterization of a targeted nanoparticle functionalized with a urea-based inhibitor of prostate-specific membrane antigen (PSMA). Cancer Biol. Ther. 7(6), 978–986 (2008)

    Article  Google Scholar 

  36. D.D. Von Hoff, M.M. Mita, R.K. Ramanathan, G.J. Weiss, A.C. Mita, P.M. LoRusso et al., Phase I study of PSMA-targeted docetaxel-containing nanoparticle BIND-014 in patients with advanced solid tumors. Clin. Cancer Res. 22(13), 3157–3163 (2016)

    Article  Google Scholar 

  37. C.G. Hadjipanayis, R. Machaidze, M. Kaluzova, L. Wang, A.J. Schuette, H. Chen et al., EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res. 70(15), 6303–6312 (2010)

    Article  Google Scholar 

  38. Y. Ling, K. Wei, Y. Luo, X. Gao, S.Z. Zhong, Dual docetaxel/superparamagnetic iron oxide loaded nanoparticles for both targeting magnetic resonance imaging and cancer therapy. Biomaterials 32(29), 7139–7150 (2011)

    Article  Google Scholar 

  39. G.H. Chen, W.J. Chen, Z. Wu, R.X. Yuan, H. Li, J.M. Gao et al., MRI-visible polymeric vector bearing CD3 single chain antibody for gene delivery to T cells for immunosuppression. Biomaterials 30(10), 1962–1970 (2009)

    Article  Google Scholar 

  40. R.M. Lu, Y.L. Chang, M.S. Chen, H.C. Wu, Single chain anti-c-Met antibody conjugated nanoparticles for in vivo tumor-targeted imaging and drug delivery. Biomaterials 32(12), 3265–3274 (2011)

    Article  Google Scholar 

  41. D.S. Wilson, J.W. Szostak, In vitro selection of functional nucleic acids. Annu. Rev. Biochem. 68, 611–647 (1999)

    Article  Google Scholar 

  42. S.E. Lupold, B.J. Hicke, Y. Lin, D.S. Coffey, Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res. 62(14), 4029–4033 (2002)

    Google Scholar 

  43. O.C. Farokhzad, S.Y. Jon, A. Khademhosseini, T.N.T. Tran, D.A. LaVan, R. Langer, Nanopartide-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res. 64(21), 7668–7672 (2004)

    Article  Google Scholar 

  44. V. Bagalkot, L. Zhang, E. Levy-Nissenbaum, S. Jon, P.W. Kantoff, R. Langer et al., Quantum dot—aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on Bi-fluorescence resonance energy transfer. Nano Lett. 7(10), 3065–3070 (2007)

    Article  ADS  Google Scholar 

  45. U. Gunthert, M. Hofmann, W. Rudy, S. Reber, M. Zoller, I. Haussmann et al., A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma-cells. Cell 65(1), 13–24 (1991)

    Article  Google Scholar 

  46. W.T. Wu, J. Shen, P. Banerjee, S.Q. Zhou, Core-shell hybrid nanogels for integration of optical temperature-sensing, targeted tumor cell imaging, and combined chemo-photothermal treatment. Biomaterials 31(29), 7555–7566 (2010)

    Article  Google Scholar 

  47. D.W. Hwang, H.Y. Kim, F.Y. Li, J.Y. Park, D. Kim, J.H. Park et al., In vivo visualization of endogenous miR-21 using hyaluronic acid-coated graphene oxide for targeted cancer therapy. Biomaterials 121, 144–154 (2017)

    Article  Google Scholar 

  48. A. Garg, A.W. Tisdale, E. Haidari, E. Kokkoli, Targeting colon cancer cells using PEGylated liposomes modified with a fibronectin-mimetic peptide. Int. J. Pharm. 366(1–2), 201–210 (2009)

    Article  Google Scholar 

  49. M.E. Gindy, S.X. Ji, T.R. Hoye, A.Z. Panagiotopoulos, R.K. Prud’homme, Preparation of poly(ethylene glycol) protected nanoparticles with variable bioconjugate ligand density. Biomacromol 9(10), 2705–2711 (2008)

    Article  Google Scholar 

  50. V. Olivier, I. Meisen, B. Meckelein, T.R. Hirst, J. Peter-Katalinic, M.A. Schmidt et al., Influence of targeting ligand flexibility on receptor binding of particulate drug delivery systems. Bioconjug. Chem. 14(6), 1203–1208 (2003)

    Article  Google Scholar 

  51. M. Ferrari, Beyond drug delivery. Nat. Nanotechnol. 3(3), 131–132 (2008)

    Article  ADS  Google Scholar 

  52. F. Gu, L. Zhang, B.A. Teply, N. Mann, A. Wang, A.F. Radovic-Moreno et al., Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc. Natl. Acad. Sci. U.S.A. 105(7), 2586–2591 (2008)

    Article  ADS  Google Scholar 

  53. H. Shmeeda, D. Tzernach, L. Mak, A. Gabizon, Her2-targeted pegylated liposomal doxorubicin: retention of target-specific binding and cytotoxicity after in vivo passage. J. Control Release 136(2), 155–160 (2009)

    Article  Google Scholar 

  54. J.H. Park, G. von Maltzahn, L.L. Zhang, A.M. Derfus, D. Simberg, T.J. Harris et al., Systematic surface engineering of magnetic nanoworms for in vivo tumor targeting. Small 5(6), 694–700 (2009)

    Article  Google Scholar 

  55. S. Jeong, J.Y. Park, M.G. Cha, H. Chang, Y.I. Kim, H.M. Kim et al., Highly robust and optimized conjugation of antibodies to nanoparticles using quantitatively validated protocols. Nanoscale 9(7), 2548–2555 (2017)

    Article  Google Scholar 

  56. D. Zeng, N.S. Lee, Y. Liu, D. Zhou, C.S. Dence, K.L. Wooley et al., 64Cu core-labeled nanoparticles with high specific activity via metal-free click chemistry. ACS Nano 6(6), 5209–5219 (2012)

    Article  Google Scholar 

  57. S.B. Lee, H.L. Kim, H.J. Jeong, S.T. Lim, M.H. Sohn, D.W. Kim, Mesoporous silica nanoparticle pretargeting for PET imaging based on a rapid bioorthogonal reaction in a living body. Angew. Chem. Int. Ed. Engl. 52(40), 10549–10552 (2013)

    Article  Google Scholar 

  58. W.G. Kreyling, A.M. Abdelmonem, Z. Ali, F. Alves, M. Geiser, N. Haberl et al., In vivo integrity of polymer-coated gold nanoparticles. Nat. Nanotechnol. 10(7), 619–623 (2015)

    Article  ADS  Google Scholar 

  59. D.E. Lee, J.H. Na, S. Lee, C.M. Kang, H.N. Kim, S.J. Han et al., Facile method to radiolabel glycol chitosan nanoparticles with 64Cu via copper-free click chemistry for microPET imaging. Mol. Pharm. 10(6), 2190–2198 (2013)

    Article  Google Scholar 

  60. A. Ruggiero, C.H. Villa, J.P. Holland, S.R. Sprinkle, C. May, J.S. Lewis et al., Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes. Int. J. Nanomed. 5, 783–802 (2010)

    Google Scholar 

  61. K.J. Harrington, S. Mohammadtaghi, P.S. Uster, D. Glass, A.M. Peters, R.G. Vile et al., Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin. Cancer Res. 7(2), 243–254 (2001)

    Google Scholar 

  62. Y.J. Chang, C.H. Chang, T.J. Chang, C.Y. Yu, L.C. Chen, M.L. Jan et al., Biodistribution, pharmacokinetics and microSPECT/CT imaging of 188Re-bMEDA-liposome in a C26 murine colon carcinoma solid tumor animal model. Anticancer Res. 27(4b), 2217–2225 (2007)

    Google Scholar 

  63. F. Chen, H. Hong, Y. Zhang, H.F. Valdovinos, S. Shi, G.S. Kwon et al., In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano 7(10), 9027–9039 (2013)

    Article  Google Scholar 

  64. R. Zhang, Q. Fan, M. Yang, K. Cheng, X. Lu, L. Zhang et al., Engineering melanin nanoparticles as an efficient drug-delivery system for imaging-guided chemotherapy. Adv. Mater. 27(34), 5063–5069 (2015)

    Article  Google Scholar 

  65. S.X. Wang, A. Bao, S.J. Herrera, W.T. Phillips, B. Goins, C. Santoyo et al., Intraoperative 186Re-liposome radionuclide therapy in a head and neck squamous cell carcinoma xenograft positive surgical margin model. Clin. Cancer Res. 14(12), 3975–3983 (2008)

    Article  Google Scholar 

  66. H.-E. Wang, H.-M. Yu, Y.-C. Lu, N.-N. Heish, Y.-L. Tseng, K.-L. Huang et al., Internal radiotherapy and dosimetric study for 111In/177Lu-pegylated liposomes conjugates in tumor-bearing mice. Nucl. Instrum. Methods Phys. Res. A. 569(2), 533–537 (2006)

    Article  ADS  Google Scholar 

  67. L.C. Chen, C.H. Chang, C.Y. Yu, Y.J. Chang, W.C. Hsu, C.L. Ho et al., Biodistribution, pharmacokinetics and imaging of 188Re-BMEDA-labeled pegylated liposomes after intraperitoneal injection in a C26 colon carcinoma ascites mouse model. Nucl. Med. Biol. 34(4), 415–423 (2007)

    Article  Google Scholar 

  68. L. Li, C.A. Wartchow, S.N. Danthi, Z. Shen, N. Dechene, J. Pease et al., A novel antiangiogenesis therapy using an integrin antagonist or anti-Flk-1 antibody coated 90Y-labeled nanoparticles. Int. J. Radiat. Oncol. Biol. Phys. 58(4), 1215–1227 (2004)

    Article  Google Scholar 

  69. S. Yook, Z. Cai, Y. Lu, M.A. Winnik, J.P. Pignol, R.M. Reilly, Intratumorally injected 177Lu-labeled gold nanoparticles: Gold nanoseed brachytherapy with application for neoadjuvant treatment of locally advanced breast cancer. J. Nucl. Med. 57(6), 936–942 (2016)

    Article  Google Scholar 

  70. L. Apetoh, F. Ghiringhelli, A. Tesniere, M. Obeid, C. Ortiz, A. Criollo et al., Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13(9), 1050–1059 (2007)

    Article  Google Scholar 

  71. M. Obeid, T. Panaretakis, N. Joza, R. Tufi, A. Tesniere, P. van Endert et al., Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis. Cell Death Differ. 14(10), 1848–1850 (2007)

    Article  Google Scholar 

  72. C. Vanpouille-Box, F. Lacoeuille, C. Belloche, N. Lepareur, L. Lemaire, J.-J. LeJeune et al., Tumor eradication in rat glioma and bypass of immunosuppressive barriers using internal radiation with 188Re-lipid nanocapsules. Biomaterials 32(28), 6781–6790 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun-Sang Lee or Dexing Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, YS., Sun, L., Zeng, D. (2018). Click Chemistry for Radionanomedicine Platform. In: Lee, D. (eds) Radionanomedicine. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-67720-0_12

Download citation

Publish with us

Policies and ethics