Skip to main content

Plasma Sources for Biomedical Applications

  • Chapter
  • First Online:
Comprehensive Clinical Plasma Medicine

Abstract

This chapter introduces the reader to the physical characteristics of plasma in general and subsequently focuses on cold atmospheric plasma (CAP). This technological branch is especially important for biomedical applications. The technological perspective for generation of CAP by means of different gas discharge concepts and their applications is reviewed and concepts for their technical realization are introduced. Challenges and solutions associated with specific plasma source concepts are discussed. Currently available medical products with a broad scientific background are highlighted. Finally, the authors envision prospective technical solutions showcasing the broad bandwidth of plasma engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langmuir I. Oscillations in ionized gases. Proc Natl Acad Sci USA. 1928;14:627–37.

    Article  CAS  Google Scholar 

  2. Mott-Smith HM. History of “plasmas”. Nature. 1971;233:219.

    Article  CAS  Google Scholar 

  3. von Woedtke T, Reuter S, Masur K, et al. Plasmas for medicine. Phys Rep. 2013;530:291–320.

    Article  Google Scholar 

  4. Kong MG, Kroesen G, Morfill G, et al. Plasma medicine: an introductory review. New J Phys. 2009;11:115012.

    Article  Google Scholar 

  5. Partecke LI, Evert K, Haugk J, et al. Tissue tolerable plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo. BMC Cancer. 2012;12:473.

    Article  CAS  Google Scholar 

  6. Kuechler A. High voltage engineering. 1st ed. Heidelberg: Springer; 2018.

    Book  Google Scholar 

  7. Weltmann K-D, Kindel E, von Woedtke T, et al. Atmospheric-pressure plasma sources: prospective tools for plasma medicine. Pure Appl Chem. 2010;82:1223–37.

    Article  CAS  Google Scholar 

  8. Weltmann K-D, von Woedtke T. Basic requirements for plasma sources in medicine. Eur Phys J Appl Phys. 2011;55:13807.

    Article  Google Scholar 

  9. Lu X, Laroussi M, Puech V. On atmospheric-pressure non-equilibrium plasma jets and plasma bullets. Plasma Sources Sci Technol. 2012;21:034005.

    Article  Google Scholar 

  10. Kuchenbecker M, Bibinov N, Kaemling A, et al. Characterization of DBD plasma source for biomedical applications. J Phys D Appl Phys. 2009;42:045212.

    Article  Google Scholar 

  11. Helmke A, Hoffmeister D, Berge F, et al. Physical and microbiological characterisation of Staphylococcus epidermidis inactivation by dielectric barrier discharge plasma. Plasma Process Polym. 2011;8:278–86.

    Article  CAS  Google Scholar 

  12. Fridman G, Friedman G, Gutsol A, et al. Applied plasma medicine. Plasma Process Polym. 2008;5:503–33.

    Article  CAS  Google Scholar 

  13. Eliasson B, Kogelschatz U. Modeling and applications of silent discharge plasmas. IEEE Trans Plasma Sci. 1991;19:309–23.

    Article  Google Scholar 

  14. van Veldhuizen EM, Rutgers WR. Pulsed positive corona streamer propagation and branching. J Phys D Appl Phys. 2002;35:2169–79.

    Article  Google Scholar 

  15. Kogelschatz U. Filamentary, patterned, and diffuse barrier discharges. IEEE Trans Plasma Sci. 2002;30:1400–8.

    Article  CAS  Google Scholar 

  16. Helmke A, Franck M, Wandke D, Vioel W. Tempo-spatially resolved ozone characteristics during single-electrode dielectric barrier discharge (SE-DBD) operation against metal and porcine skin surfaces. Plasma Med. 2014;4:67–77.

    Article  Google Scholar 

  17. Keller S, Bibinov N, Neugebauer A, et al. Electrical and spectroscopic characterization of a surgical argon plasma discharge. J Phys D Appl Phys. 2013;46:025402.

    Article  Google Scholar 

  18. Zenker M. Argon plasma coagulation. GMS Krankenhaushyg Interdiszip. 2008;3:Doc15.

    Google Scholar 

  19. Laroussi M, Akan T. Arc-free atmospheric pressure cold plasma jets: a review. Plasma Process Polym. 2007;4:777–88.

    Article  CAS  Google Scholar 

  20. Winter J, Brandenburg R, Weltmann K-D. Atmospheric pressure plasma jets: an overview of devices and new directions. Plasma Sources Sci Technol. 2015;24:064001.

    Article  Google Scholar 

  21. Shimizu T, Steffes B, Pompl R, et al. Characterization of microwave plasma torch for decontamination. Plasma Process Polym. 2008;5:577–82.

    Article  CAS  Google Scholar 

  22. Morfill GE, Kong MG, Zimmermann JL. Focus on plasma medicine. New J Phys. 2009;11:115011,8pp

    Article  Google Scholar 

  23. Teschke M, Kedzierski J, Finantu-Dinu EG, et al. High-speed photographs of a dielectric barrier atmospheric pressure plasma jet. IEEE Trans Plasma Sci. 2005;33:310–1.

    Article  Google Scholar 

  24. Reuter S, Winter J, Iseni S, Peters S, Schmidt-Bleker A, Duennbier M, Schaefer J, Foest R, Weltmann KD. Detection of ozone in a MHz argon plasma bullet jet. Plasma Sources Sci Technol. 2012;21:034015.

    Article  Google Scholar 

  25. Lu X, Naidis GV, Laroussi M, et al. Reactive species in non-equilibrium atmospheric-pressure plasmas: generation, transport, and biological effects. Phys Rep. 2016;630:1–84.

    Article  CAS  Google Scholar 

  26. Darny T, Pouvesle J-M, Puech V, et al. Analysis of conductive target influence in plasma jet experiments through helium metastable and electric field measurements. Plasma Sources Sci Technol. 2017;26:45008.

    Article  Google Scholar 

  27. Bussiahn R, Brandenburg R, Gerling T, et al. The hairline plasma: an intermittent negative dc-corona discharge at atmospheric pressure for plasma medical applications. Appl Phys Lett. 2010;96:143701.

    Article  Google Scholar 

  28. Fridman G, Peddinghaus M, Balasubramanian M, Ayan H, Fridman A, Gutsol A, Brooks A. Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air. Plasma Chem Plasma Process. 2006;26:425–42.

    Article  CAS  Google Scholar 

  29. Helmke A, Mahmoodzada M, Wandke D, Weltmann KD, Viöl W. Impact of electrode design, supply voltage and interelectrode distance on safety aspects of a medical DBD plasma source. Contrib Plasma Phys. 2013;53:623–38.

    Article  CAS  Google Scholar 

  30. Laroussi M, Lu X. Room-temperature atmospheric pressure plasma plume for biomedical applications. Appl Phys Lett. 2005;87:113902–3.

    Article  Google Scholar 

  31. Dang CN, Anwar R, Thomas G, et al. The biogun: a novel way of eradicating MRSA colonization in diabetic foot ulcers. Diabetes Care. 2006;29:1176–7.

    Article  Google Scholar 

  32. Shekhter AB, Kabisov RK, Pekshev AV, et al. Experimental and clinical validation of Plasmadynamic therapy of wounds with nitric oxide. Bull Exp Biol Med. 1998;126:829–34.

    Article  CAS  Google Scholar 

  33. Pekshev AV, Shekhter AB, Vagapov AB, et al. Study of plasma-chemical NO-containing gas flow for treatment of wounds and inflammatory processes. Nitric Oxide. 2017; In press.

    Google Scholar 

  34. Hants Y, Kabiri D, Drukker L, et al. Preliminary evaluation of novel skin closure of Pfannenstiel incisions using cold helium plasma and chitosan films. J Matern Fetal Neonatal Med. 2014;27:1637–42.

    Article  CAS  Google Scholar 

  35. Bekeschus S, Schmidt A, Weltmann K-D, et al. The plasma jet kINPen—a powerful tool for wound healing. Clin Plasma Med. 2016;4:19–28.

    Article  Google Scholar 

  36. Isbary G, Morfill G, Schmidt H, et al. A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br J Dermatol. 2010;163:78–82.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors Gerling and Weltmann thank the internal and external cooperation partners of the projects “Campus PlasmaMed I and II,” funded by the German Federal Ministry of Education and Research (13 N9779 and 13 N11188); “Plasmamedizinische Forschung—neue pharmazeutische und medizinische Anwendungsfelder,” funded by the Ministry for Research, Development and Culture of the State of Mecklenburg-Vorpommern and the European Union by the European Social Fund (AU 11 038, ESF/IV-BM-B35-0010/13); “Entwicklung eines neuartigen Wundbehandlungssystems auf Basis von Plasmatechnologien und dem Einsatz flächiger textiler Plasmaquellen für den mobilen und stationären Einsatz—PlasmaWundTex,” funded by Zentrales Innovationsprogramm Mittelstand of the German Federal Ministry for Economic Affairs and Energy (KF2046509AK3); “Erweiterung der medizinischen Anwendungsmöglichkeiten kalter Atmosphärendruckplasmajets (MEDKAP),” funded by the German Ministry of Education; “Plasmamedizin—Anwendungsorientierte Grundlagenforschung zu physikalischem Plasma in der Medizin” funded by the Ministry of Education, Science and Culture of the State of Mecklenburg-Vorpommern (grant: AU 15 001).

The author Helmke thanks all cooperation partners of the research group “BioLiP”, funded by the German Federal Ministry of Education and Research (BMBF, grant no. 13 N9089), the associated partners in the project “PlaStraKomb,” funded by the BMBF (grant no. PNT51501), the partners of the research group “Campus PlasmaMed II,” funded by the BMBF (grant no. 13 N11190), as well as the partners of the joint research project “WuPlaKo,” funded by the BMBF (grant no. 13GW0041D) and “KonchaWu,” funded by the Ministry of economics of the State of Niedersachsen and the European Regional Development Fund ERDF (grant no. ZW 3-85006987).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Helmke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Helmke, A., Gerling, T., Weltmann, KD. (2018). Plasma Sources for Biomedical Applications. In: Metelmann, HR., von Woedtke, T., Weltmann, KD. (eds) Comprehensive Clinical Plasma Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-67627-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67627-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67626-5

  • Online ISBN: 978-3-319-67627-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics