Skip to main content

A Probabilistic Programming Language for Influence Diagrams

  • Conference paper
  • First Online:
Scalable Uncertainty Management (SUM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10564))

Included in the following conference series:

Abstract

Probabilistic Programming (PP) extends the expressiveness and scalability of Bayesian networks via programmability. Influence Diagrams (IDs) extend Bayesian Networks with decision variables and utility functions, allowing them to model sequential decision problems. Limited-Memory IDs (LIMIDs) further allow some earlier events to be ignored or forgotten. We propose a generalisation of PP and LIMIDs called IDLP, implemented in Logic Programming and with a solver based on Reinforcement Learning and sampling. We show that IDLP can model and solve LIMIDs, and perform PP tasks including inference, finding most probable explanations, and maximum likelihood estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In standard Prolog notation a predicate P/A has name P and arity A.

  2. 2.

    The underscore _ character is a Prolog anonymous variable that matches any term and indicates a “don’t care” value.

  3. 3.

    A different policy is given in [9]: treat in month 3 if tests 1 and 2, or 3, are positive. We find that their policy has expected utility 725.884 while ours is optimal. They cite our expected utility so we believe this was simply a typographical error. To compute the expected value of a policy we use the variable elimination algorithm where, instead of maximising over the decision variables, we set their values according to the policy.

References

  1. Birge, J.R., Louveaux, F.V.: Introduction to Stochastic Programming. Springer, New York (2011). doi:10.1007/978-1-4614-0237-4

    Book  MATH  Google Scholar 

  2. van den Broeck, G., Thon, I., van Otterlo, M., de Raedt, L.: DTProbLog: a decision-theoretic probabilistic prolog. In: 24th AAAI Conference on Artificial Intelligence (2010)

    Google Scholar 

  3. Cano, A., Gómez, M., Moral, S.: A forward-backward Monte Carlo method for solving influence diagrams. Int. J. Approximate Reasoning 42, 119–135 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Charnes, J.M., Shenoy, P.P.: Multistage Monte Carlo Method for solving influence diagrams using local computation. Manage. Sci. 50(3), 405–418 (2004)

    Article  MATH  Google Scholar 

  5. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic programming. in: International Conference on Software Engineering (2014)

    Google Scholar 

  6. Gutmann, B., Thon, I., De Raedt, L.: Learning the parameters of probabilistic logic programs from interpretations. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS, vol. 6911, pp. 581–596. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23780-5_47

    Chapter  Google Scholar 

  7. Howard, R.A., Matheson, J.E.: Influence Diagrams. Readings in Decision Analysis, Strategic Decisions Group, Menlo Park, CA, Chap. 38, pp. 763–771 (1981)

    Google Scholar 

  8. Kimura, H.: Reinforcement learning in multi-dimensional state-action space using Random Rectangular Coarse Coding and Gibbs Sampling. In: International Conference on Intelligent Robots and Systems. IEEE (2007)

    Google Scholar 

  9. Lauritzen, S.L., Nilsson, D.: Representing and solving decision problems with limited information. Manage. Sci. 47, 1238–1251 (2001)

    Article  MATH  Google Scholar 

  10. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Series in Representation and Reasoning. Morgan Kaufman Publishers, San Mateo (1988)

    MATH  Google Scholar 

  11. Pfeffer, A.: Practical Probabilistic Programming. Manning Publications, Greenwich (2016)

    Google Scholar 

  12. http://probabilistic-programming.org/wiki/Home

  13. De Raedt, L., Kimmig, A.: Probabilistic (logic) programming concepts. Mach. Learn. 100(1), 5–47 (2015). Springer New York LLC

    Article  MathSciNet  MATH  Google Scholar 

  14. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: a probabilistic prolog and its application in link discovery. In: IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 2462–2467 (2007)

    Google Scholar 

  15. Raiffa, H.: Decision Analysis. Addison-Wesley, Reading (1968)

    MATH  Google Scholar 

  16. Sato, T.: A statistical learning method for logic programs with distribution semantics. In: Proceedings of the 12th International Conference on Logic Programming, pp. 715–729. MIT Press (1995)

    Google Scholar 

  17. Shachter, R.D.: Evaluating influence diagrams. Oper. Res. 34(6), 871–882 (1986)

    Article  MathSciNet  Google Scholar 

  18. Sutton, R.S., Barto, A.G.: Reinforcement Learning: an Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven D. Prestwich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Prestwich, S.D., Toffano, F., Wilson, N. (2017). A Probabilistic Programming Language for Influence Diagrams. In: Moral, S., Pivert, O., Sánchez, D., Marín, N. (eds) Scalable Uncertainty Management. SUM 2017. Lecture Notes in Computer Science(), vol 10564. Springer, Cham. https://doi.org/10.1007/978-3-319-67582-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67582-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67581-7

  • Online ISBN: 978-3-319-67582-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics