Skip to main content

Current State-of-the-Art 3D Tissue Models and Their Compatibility with Live Cell Imaging

  • Chapter
  • First Online:
Multi-Parametric Live Cell Microscopy of 3D Tissue Models

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1035))

Abstract

Mammalian cells grow within a complex three-dimensional (3D) microenvironment where multiple cells are organized and surrounded by extracellular matrix (ECM). The quantity and types of ECM components, alongside cell-to-cell and cell-to-matrix interactions dictate cellular differentiation, proliferation and function in vivo. To mimic natural cellular activities, various 3D tissue culture models have been established to replace conventional two dimensional (2D) culture environments. Allowing for both characterization and visualization of cellular activities within possibly bulky 3D tissue models presents considerable challenges due to the increased thickness and subsequent light scattering features of such 3D models. In this chapter, state-of-the-art methodologies used to establish 3D tissue models are discussed, first with a focus on both scaffold-free and scaffold-based 3D tissue model formation. Following on, multiple 3D live cell imaging systems, mainly optical imaging modalities, are introduced. Their advantages and disadvantages are discussed, with the aim of stimulating more research in this highly demanding research area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baker BM, Chen CS (2012) Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J Cell Sci 125(Pt 13):3015–3024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Thomas CH, Collier JH, Sfeir CS, Healy KE (2002) Engineering gene expression and protein synthesis by modulation of nuclear shape. Proc Natl Acad Sci 99(4):1972–1977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vergani L, Grattarola M, Nicolini C (2004) Modifications of chromatin structure and gene expression following induced alterations of cellular shape. Int J Biochem Cell Biol 36(8):1447–1461

    Article  CAS  PubMed  Google Scholar 

  4. Nam KH, Smith AS, Lone S, Kwon S, Kim DH (2015) Biomimetic 3D tissue models for advanced high-throughput drug screening. J Lab Autom 20(3):201–215

    Article  CAS  PubMed  Google Scholar 

  5. Cukierman E, Pankov R, Yamada KM (2002) Cell interactions with three-dimensional matrices. Curr Opin Cell Biol 14(5):633–639

    Article  CAS  PubMed  Google Scholar 

  6. Knight E, Przyborski S (2015) Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. J Anat 227(6):746–756

    Article  PubMed  Google Scholar 

  7. Wang W, Itaka K, Ohba S, Nishiyama N, Chung U-I, Yamasaki Y et al (2009) 3D spheroid culture system on micropatterned substrates for improved differentiation efficiency of multipotent mesenchymal stem cells. Biomaterials 30(14):2705–2715

    Article  CAS  PubMed  Google Scholar 

  8. Deegan AJ, Aydin HM, Hu B, Konduru S, Kuiper JH, Yang Y (2014) A facile in vitro model to study rapid mineralization in bone tissues. Biomed Eng Online 13(1):136

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hildebrandt C, Büth H, Thielecke H (2011) A scaffold-free in vitro model for osteogenesis of human mesenchymal stem cells. Tissue Cell 43:91–100

    Article  CAS  PubMed  Google Scholar 

  10. Berrier AL, Yamada KM (2007) Cell–matrix adhesion. J Cell Physiol 213(3):565–573

    Article  CAS  PubMed  Google Scholar 

  11. Kanczler JA, Ginty PJ, Barry JJA, Clarke NMP, Howdle SM, Shakesheff KM et al (2008) The effect of mesenchymal populations and vascular endothelial growth factor delivered from biodegradable polymer scaffolds on bone formation. Biomaterials 29(12):1892–1900

    Article  CAS  PubMed  Google Scholar 

  12. Rouwkema J, Rivron NC, van Blitterswijk CA (2008) Vascularization in tissue engineering. Trends Biotechnol 26:434–441

    Article  CAS  PubMed  Google Scholar 

  13. Fuchs S, Hofmann A, Kirkpatrick C (2007) Microvessel-like structures from outgrowth endothelial cells from human peripheral blood in 2-dimensional and 3-dimensional co-cultures with osteoblastic lineage cells. Tissue Eng 13(10):2577–2588

    Article  CAS  PubMed  Google Scholar 

  14. Melero-Martin JM, De Obaldia ME, Kang SY, Khan ZA, Yuan L, Oettgen P et al (2008) Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ Res 103(2):194–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fuchs S, Ghanaati S, Orth C, Barbeck M, Kolbe M, Hofmann A et al (2009) Contribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on starch polycaprolactone scaffolds. Biomaterials 30(4):526–534

    Article  CAS  PubMed  Google Scholar 

  16. Tsigkou O, Pomerantseva I, Spencer JA, Redondo PA, Hart AR, O’Doherty E et al (2010) Engineered vascularized bone grafts. Proc Natl Acad Sci 107(8):3311–3316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saleh FA, Whyte M, Genever PG (2011) Effects of endothelial cells on human mesenchymal stem cell activity in a three-dimensional in vitro model. Eur Cell Mater 22:242–257. discussion 57

    Article  CAS  PubMed  Google Scholar 

  18. Morimoto Y, Kato-Negishi M, Onoe H, Takeuchi S (2013) Three-dimensional neuron–muscle constructs with neuromuscular junctions. Biomaterials 34(37):9413–9419

    Article  CAS  PubMed  Google Scholar 

  19. Giacomelli E, Bellin M, Sala L, van Meer BJ, Tertoolen LG, Orlova VV et al (2017) Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells. Development 144(6):1008–1017

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Mannhardt I, Breckwoldt K, Letuffe-Brenière D, Schaaf S, Schulz H, Neuber C et al (2016) Human engineered heart tissue: analysis of contractile force. Stem Cell Rep 7(1):29–42

    Article  CAS  Google Scholar 

  21. Howard D, Buttery LD, Shakesheff KM, Roberts SJ (2008) Tissue engineering: strategies, stem cells and scaffolds. J Anat 213(1):66–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baharvand H, Hashemi SM, Kazemi Ashtiani S, Farrokhi A (2006) Differentiation of human embryonic stem cells into hepatocytes in 2D and 3D culture systems in vitro. Int J Dev Biol 50(7):645–652

    Article  CAS  PubMed  Google Scholar 

  23. Willerth SM, Arendas KJ, Gottlieb DI, Sakiyama-Elbert SE (2006) Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells. Biomaterials 27(36):5990–6003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gerecht S, Burdick JA, Ferreira LS, Townsend SA, Langer R, Vunjak-Novakovic G (2007) Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci U S A 104(27):11298–11303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. O'Brien FJ (2011) Biomaterials & amp; scaffolds for tissue engineering. Mater Today 14(3):88–95

    Article  Google Scholar 

  26. Yang Y, El Haj AJ (2006) Biodegradable scaffolds--delivery systems for cell therapies. Expert Opin Biol Ther 6(5):485–498

    Article  CAS  PubMed  Google Scholar 

  27. Jafari M, Paknejad Z, Rad MR, Motamedian SR, Eghbal MJ, Nadjmi N et al (2017) Polymeric scaffolds in tissue engineering: a literature review. J Biomed Mater Res B Appl Biomater 105(2):431–459

    Article  CAS  PubMed  Google Scholar 

  28. Dabbs DJ (2013) Diagnostic immunohistochemistry e-book. Elsevier Health Sciences, Amsterdam

    Google Scholar 

  29. Ramos-Vara JA (2005) Technical aspects of immunohistochemistry. Vet Pathol 42(4):405–426

    Article  CAS  PubMed  Google Scholar 

  30. Pusztaszeri MP, Seelentag W, Bosman FT (2006) Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. J Histochem Cytochem 54(4):385–395

    Article  CAS  PubMed  Google Scholar 

  31. Gantenbein-Ritter B, Sprecher CM, Chan S, Illien-Junger S, Grad S (2011) Confocal imaging protocols for live/dead staining in three-dimensional carriers. Methods Mol Biol 740:127–140

    Article  CAS  PubMed  Google Scholar 

  32. Clegg RM, Murchie AI, Lilley DM (1993) The four-way DNA junction: a fluorescence resonance energy transfer study. Braz J Med Biol Res 26(4):405–416

    CAS  PubMed  Google Scholar 

  33. Deniz AA, Laurence TA, Beligere GS, Dahan M, Martin AB, Chemla DS et al (2000) Single-molecule protein folding: diffusion fluorescence resonance energy transfer studies of the denaturation of chymotrypsin inhibitor 2. Proc Natl Acad Sci U S A 97(10):5179–5184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chennell G, Willows RJW, Warren SC, Carling D, French PMW, Dunsby C et al (2016) Imaging of metabolic status in 3D cultures with an improved AMPK FRET biosensor for FLIM. Sensors 16(8):1312

    Article  PubMed Central  Google Scholar 

  35. Dmitriev RI, Borisov SM, Dussmann H, Sun S, Muller BJ, Prehn J et al (2015) Versatile conjugated polymer nanoparticles for high-resolution O2 imaging in cells and 3D tissue models. ACS Nano 9(5):5275–5288

    Article  CAS  PubMed  Google Scholar 

  36. Elttayef A, Dmitriev R, Kelly C, Yang Y (2017) Fabrication and characterisation of pseudoislets with different size and cell-cell contact. Abstract booklet of TCES annual conference, Manchester, UK

    Google Scholar 

  37. Yang Y, Bagnaninchi PO, Wood MA, El Haj AJ, Guyot E, Dubois A et al (2005) Monitoring cell profile in tissue engineering by optical coherence tomography. Proc SPIE 5695:51–57

    Article  CAS  Google Scholar 

  38. Yang Y, Dubois A, Qin XP, Li J, El Haj A, Wang RK (2006) Investigation of optical coherence tomography as an imaging modality in tissue engineering. Phys Med Biol 51(7):1649–1659

    Article  PubMed  Google Scholar 

  39. Izatt JA, Swanson EA, Fujimoto JG, Hee MR, Owen GM (1994) Optical coherence microscopy in scattering media. Opt Lett 19(8):590–592

    Article  CAS  PubMed  Google Scholar 

  40. Tan W, Vinegoni C, Norman JJ, Desai TA, Boppart SA (2007) Imaging cellular responses to mechanical stimuli within three-dimensional tissue constructs. Microsc Res Tech 70(4):361–371

    Article  PubMed  Google Scholar 

  41. Appel AA, Anastasio MA, Larson JC, Brey EM (2013) Imaging challenges in biomaterials and tissue engineering. Biomaterials 34(28):6615–6630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Martín-Badosa E, Amblard D, Nuzzo S, Elmoutaouakkil A, Vico L, Peyrin F (2003) Excised bone structures in mice: imaging at three-dimensional synchrotron radiation micro CT. Radiology 229(3):921–928

    Article  PubMed  Google Scholar 

  43. Kallai I, Mizrahi O, Tawackoli W, Gazit Z, Pelled G, Gazit D (2011) Microcomputed tomography-based structural analysis of various bone tissue regeneration models. Nat Protoc 6(1):105–110

    Article  CAS  PubMed  Google Scholar 

  44. Taiani JT, Buie HR, Campbell GM, Manske SL, Krawetz RJ, Rancourt DE et al (2014) Embryonic stem cell therapy improves bone quality in a model of impaired fracture healing in the mouse; tracked temporally using in vivo micro-CT. Bone 64:263–272

    Article  CAS  PubMed  Google Scholar 

  45. Lienemann PS, Metzger S, Kivelio AS, Blanc A, Papageorgiou P, Astolfo A et al (2015) Longitudinal in vivo evaluation of bone regeneration by combined measurement of multi-pinhole SPECT and micro-CT for tissue engineering. Sci Rep 5:10238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tower RJ, Campbell GM, Muller M, Gluer CC, Tiwari S (2015) Utilizing time-lapse micro-CT-correlated bisphosphonate binding kinetics and soft tissue-derived input functions to differentiate site-specific changes in bone metabolism in vivo. Bone 74:171–181

    Article  CAS  PubMed  Google Scholar 

  47. Jones AC, Milthorpe B, Averdunk H, Limaye A, Senden TJ, Sakellariou A et al (2004) Analysis of 3D bone ingrowth into polymer scaffolds via micro-computed tomography imaging. Biomaterials 25(20):4947–4954

    Article  CAS  PubMed  Google Scholar 

  48. Porter BD, Lin AS, Peister A, Hutmacher D, Guldberg RE (2007) Noninvasive image analysis of 3D construct mineralization in a perfusion bioreactor. Biomaterials 28(15):2525–2533

    Article  CAS  PubMed  Google Scholar 

  49. Cartmell S, Huynh K, Lin A, Nagaraja S, Guldberg R (2004) Quantitative microcomputed tomography analysis of mineralization within three-dimensional scaffolds in vitro. J Biomed Mater Res A 69A(1):97–104

    Article  CAS  Google Scholar 

  50. Young S, Kretlow JD, Nguyen C, Bashoura AG, Baggett LS, Jansen JA et al (2008) Microcomputed tomography characterization of neovascularization in bone tissue engineering applications. Tissue Eng B Rev 14(3):295–306

    Article  CAS  Google Scholar 

  51. Nagata M, Oi A, Sakai W, Tsutsumi N (2012) Synthesis and properties of biodegradable network poly(ether-urethane)s from L-lysine triisocyanate and poly(alkylene glycol)s. J Appl Polym Sci 126(S2):E358–EE64

    Article  CAS  Google Scholar 

  52. Giunchedi P, Conti B, Scalia S, Conte U (1998) In vitro degradation study of polyester microspheres by a new HPLC method for monomer release determination. J Control Release 56(1–3):53–62

    Article  CAS  PubMed  Google Scholar 

  53. Proikakis CS, Mamouzelos NJ, Tarantili PA, Andreopoulos AG (2006) Swelling and hydrolytic degradation of poly(d,l-lactic acid) in aqueous solutions. Polym Degrad Stab 91(3):614–619

    Article  CAS  Google Scholar 

  54. Artzi N, Oliva N, Puron C, Shitreet S, Artzi S, Bon Ramos A et al (2011) In vivo and in vitro tracking of erosion in biodegradable materials using non-invasive fluorescence imaging. Nat Mater 10(9):704–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bardsley K, Wimpenny I, Yang Y, El Haj AJ (2016) Fluorescent, online monitoring of PLGA degradation for regenerative medicine applications. RSC Adv 6(50):44364–44370

    Article  CAS  Google Scholar 

  56. Cunha-Reis C, El Haj AJ, Yang X, Yang Y (2013) Fluorescent labeling of chitosan for use in non-invasive monitoring of degradation in tissue engineering. J Tissue Eng Regen Med 7(1):39–50

    Article  CAS  PubMed  Google Scholar 

  57. Wolbank S, Pichler V, Ferguson JC, Meinl A, van Griensven M, Goppelt A et al (2015) Non-invasive in vivo tracking of fibrin degradation by fluorescence imaging. J Tissue Eng Regen Med 9(8):973–976

    Article  CAS  PubMed  Google Scholar 

  58. Bardsley K, Wimpenny I, Wechsler R, Shachaf Y, Yang Y, El Haj AJ (2016) Defining a turnover index for the correlation of biomaterial degradation and cell based extracellular matrix synthesis using fluorescent tagging techniques. Acta Biomater 45:133–142

    Article  CAS  PubMed  Google Scholar 

  59. Muiznieks LD, Keeley FW (2013) Molecular assembly and mechanical properties of the extracellular matrix: a fibrous protein perspective. Biochim Biophys Acta 1832(7):866–875

    Article  CAS  PubMed  Google Scholar 

  60. Kim S-H, Turnbull J, Guimond S (2011) Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol 209(2):139–151

    Article  CAS  PubMed  Google Scholar 

  61. Kozel BA, Rongish BJ, Czirok A, Zach J, Little CD, Davis EC et al (2006) Elastic fiber formation: a dynamic view of extracellular matrix assembly using timer reporters. J Cell Physiol 207(1):87–96

    Article  CAS  PubMed  Google Scholar 

  62. Bardsley K, Yang Y, El Haj AJ (2017) Fluorescent labeling of collagen production by cells for noninvasive imaging of extracellular matrix deposition. Tissue Eng Part C Method 23(4):228–236

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bardsley, K., Deegan, A.J., El Haj, A., Yang, Y. (2017). Current State-of-the-Art 3D Tissue Models and Their Compatibility with Live Cell Imaging. In: Dmitriev, R. (eds) Multi-Parametric Live Cell Microscopy of 3D Tissue Models. Advances in Experimental Medicine and Biology, vol 1035. Springer, Cham. https://doi.org/10.1007/978-3-319-67358-5_1

Download citation

Publish with us

Policies and ethics