Skip to main content

Time Series Forecasting Using Holt-Winters Model Applied to Anomaly Detection in Network Traffic

  • Conference paper
  • First Online:
International Joint Conference SOCO’17-CISIS’17-ICEUTE’17 León, Spain, September 6–8, 2017, Proceeding (SOCO 2017, ICEUTE 2017, CISIS 2017)

Abstract

The preoccupation of the present work is an attempt to solve the problem of anomaly detection in network traffic by means of statistical models based on exponential smoothing. We used the generalized Holt-Winters model to detect possible fluctuations in network traffic, i.e. accidental fluctuations, trend and seasonal variations. The model parameters were estimated by means of the Hyndman-Khandakar algorithm. We chose the model parameters optimal values on the grounds of information criteria (AIC) which show a compromise between the consistency model and the size of its estimation error. In the proposed method, we used automatic forecasting on the basis of the estimated traffic model, which was further compared to the real variability of the analyzed network traffic in order to detect its abnormal behavior. The results of the performed experiments confirm efficiency of the proposed solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. SANS Institute. Top cyber security risks - zero-day vulnerability trends. http://www.sans.org/top-cyber-security-risks/zero-day.php

  2. Internet Security Threat Report ISTR, vol. 22 (2017). https://www.symantec.com/content/dam/Symantec/docs/reports/istr-22-2017-en.pdf

  3. Thottan, M., Ji, C.: Anomaly detection in IP networks. IEEE Trans. Signal Process. Special Issue of Signal Processing in Networking 51(8), 2191–2204 (2003)

    Google Scholar 

  4. Lakhina, A., Crovella, M., Diot, C.: Characterization of network-wide anomalies in traffic flows. In: Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement, pp. 201–206 (2004)

    Google Scholar 

  5. Chondola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 1–72 (2009)

    Article  Google Scholar 

  6. Barford, P., Kline, J., Plonka, D., Ron, A.: A signal analysis of network traffic anomalies. In: Proceedings of the 2nd ACM SIGCOMM Workshop on Internet Measurement, pp. 71–82. ACM (2002)

    Google Scholar 

  7. Amini, M., Jalili, R., Shahriari, H.R.: RT-UNNID: a practical solution to real-time network-based intrusion detection using unsupervised neural networks. Comput. Secur. 25, 459–468 (2006)

    Article  Google Scholar 

  8. Wei, L., Ghorbani, A.: Network anomaly detection based on wavelet analysis. EURASIP J. Adv. Signal Process. 2009 (2009)

    Google Scholar 

  9. Barbara, D., Couto, J., Jajodia, S., Popyack, L., Wu, N.: ADAM: detecting intrusions by data mining. In: Proceedings of the 2001 IEEE Workshop on Information Assurance and Security, T1A3 1100 United States Military Academy, West Point, NY, pp. 5–6 (2001)

    Google Scholar 

  10. Andrysiak, T., Saganowski, Ł., Maszewski, M., Grad, P.: A DDoS attacks detection based on conditional heteroscedastic time series models. Image Process. Commun. 20(1), 23–32 (2015)

    Article  Google Scholar 

  11. Andrysiak, T., Saganowski, Ł., Choras, M., Kozik, R.: Network traffic prediction and anomaly detection based on ARFIMA model. In: de la Puerta, J.G., et al. (eds.) International Joint Conference SOCO’14-CISIS’14-ICEUTE’14. Advances in Intelligent Systems and Computing, vol. 299, pp. 545–554 (2014)

    Google Scholar 

  12. Yaacob, A., Tan, I., Chien, S., Tan, H.: Arima based network anomaly detection. In: Second International Conference on Communication Software and Networks IEEE, pp. 205–209 (2010)

    Google Scholar 

  13. Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods, 2nd edn. Springer, New York (1991)

    Book  MATH  Google Scholar 

  14. Brockwell, P., Davis, R.: Introduction to Time Series and Forecasting. Springer, New York (2002)

    Book  MATH  Google Scholar 

  15. Hyndman, R.J., Koehler, A.B., Ord, J.K., Snyder, R.D.: Forecasting with Exponential Smoothing: The State Space Approach. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  16. Brown, R.G.: Statistical Forecasting for Inventory Control. McGrow Hill, New York (1959)

    MATH  Google Scholar 

  17. Brown, R.G.: Smoothing. Forecasting and Prediction of Discrete Time Series. Prentice-Hall, Englewood Cliffs (1963)

    Google Scholar 

  18. Holt, C.C.: Forecasting seasonals and trends by exponentially weighted moving averages, ONR Memorandum, vol. 52. Carnegie Institute of Technology, Pittsburgh, PA. Available from the Engineering Library, University of Texas at Austin (1957)

    Google Scholar 

  19. Gardner, E.S.: Exponential smoothing: the state of the art. J. Forecast. 4, 1–28 (1985)

    Article  Google Scholar 

  20. Gardner, E.S.: Exponential smoothing: the state of the art Part II. Int. J. Forecast. 22, 637–666 (2006)

    Article  Google Scholar 

  21. Winters, P.R.: Forecasting sales by exponentially weighted moving averages. Manage. Sci. 6, 324–342 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  22. Archibald, B.C.: Parameter space of the Holt-Winters’ model. Int. J. Forecast. 6, 199–209 (1990)

    Article  Google Scholar 

  23. Aoki, M.: State Space Modeling of Time Series. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  24. Hyndman, R.J., Koehler, A.B., Snyder, R.D., Grose, S.: A state space framework for automatic forecasting using exponential smoothing methods. Int. J. Forecast. 18(3), 439–454 (2002)

    Article  Google Scholar 

  25. Durbin, J., Koopman, S.J.: Time Series Analysis by State Space Methods. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

  26. Hyndman, R.J., Khandakar, Y.: Automatic time series forecasting: the forecast package for R. J. Stat. Softw. 27(3) (2008)

    Google Scholar 

  27. Bozdogan, H.: Model selection and Akaike’s Information Criterion (AIC): the general theory and its analytical extensions. Psychometrika 52, 345–370 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. SNORT - Intrusion Detection System. https://www.snort.org/

  29. Kali Linux. https://www.kali.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Andrysiak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Andrysiak, T., Saganowski, Ł., Maszewski, M. (2018). Time Series Forecasting Using Holt-Winters Model Applied to Anomaly Detection in Network Traffic. In: Pérez García, H., Alfonso-Cendón, J., Sánchez González, L., Quintián, H., Corchado, E. (eds) International Joint Conference SOCO’17-CISIS’17-ICEUTE’17 León, Spain, September 6–8, 2017, Proceeding. SOCO ICEUTE CISIS 2017 2017 2017. Advances in Intelligent Systems and Computing, vol 649. Springer, Cham. https://doi.org/10.1007/978-3-319-67180-2_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67180-2_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67179-6

  • Online ISBN: 978-3-319-67180-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics