Skip to main content

Parallel Multiphysics Simulations Using OpenPALM with Application to Hydro-Biogeochemistry Coupling

  • Conference paper
  • First Online:
Modeling, Simulation and Optimization of Complex Processes HPSC 2015

Abstract

Multiphysics systems consist of more than one component governed by its own principle for evolution or equilibrium. As an example, we consider an agricultural land use scenario comprising a hydrology model and a biogeochemistry model. We employ the OpenPALM tool to realize a coupling scheme where the models run concurrently using an individual parallelization. Although the two models demand for very different computational effort to compute one time step, we achieve a balance by allocating appropriate computational resources for each of them. We assess the parallel performance of the coupled application in a 3D scenario. Our concurrent operator splitting scheme shows superior efficiency compared to common coupling approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brooks, R., Corey, A.: Hydraulic Properties of Porous Media. Hydrol. Pap. No. 3, Colorado State University (1964)

    Google Scholar 

  2. Brutsaert, W.: Hydrology. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  3. Buis, S., Piacentini, A., Declat, D., the PALM Group: Palm: a computational framework for assembling high-performance computing applications. Concurr. Comput. Pract. Exp. 18, 231–245 (2006)

    Google Scholar 

  4. Chow, V.: Open-Channel Hydraulics. McGraw-Hill, New York (1959)

    Google Scholar 

  5. Cohen, S., Hindmarsh, A.: CVODE, a Stiff/Nonstiff ODE Solver in C. Comput. Phys. 10, 138–143 (1996)

    Article  Google Scholar 

  6. Haas, E., Klatt, S., Froehlich, A., Kraft, P., Werner, C., Kiese, R., Grote, R., Breuer, L., Butterbach-Bahl, K.: LandscapeDNDC: a process model for simulation of biosphere-atmosphere-hydrosphere exchange processes at site and regional scale. Landsc. Ecol. 28, 615–636 (2013). https://doi.org/10.1007/s10980-012-9772-x

    Article  Google Scholar 

  7. Hindmarsh, A., Serban, R.: User Documentation for CVODE v2.7.0 (2012)

    Google Scholar 

  8. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Keyes, D., McInnes, L., Woodward, C., Gropp, W., Myra, E., Pernice, M., Bell, J., Brown, J., Clo, A., Connors, J., Constantinescu, E., Estep, D., Evans, K., Farhat, C., Hakim, A., Hammond, G., Hansen, G., Hill, J., Isaac, T., Jiao, X., Jordan, K., Kaushik, D., Kaxiras, E., Koniges, A., Lee, K., Lott, A., Lu, Q., Magerlein, J., Maxwell, R., McCourt, M., Mehl, M., Pawlowski, R., Peters, A., Reynolds, D., Riviere, B., Rüde, U., Scheibe, T., Shadid, J., Sheehan, B., Shephard, M., Siegel, A., Smith, B., Tang, X., Wilson, C., Wohlmuth, B.: Multiphysics Simulations: Challenges and Opportunities. Tech. Rep. ANL/MCS-TM-321 (2011)

    Google Scholar 

  10. Kim, Y., Seo, Y., Kraus, D., Klatt, S., Haas, E., Tenhunen, J., Kiese, R.: Estimation and mitigation of N2O emission and nitrate leaching from intensive crop cultivation in the Haean catchment, South Korea. Sci. Total Environ. 529, 40–53 (2015). https://doi.org/10.1016/j.scitotenv.2015.04.098

    Article  Google Scholar 

  11. Kraft, P., Vaché, K.B., Frede, H.G., Breuer, L.: A hydrological programming language extension for integrated catchment models. Environ. Model. Softw. 26(6), 828–830 (2011)

    Article  Google Scholar 

  12. Kraus, D., Weller, S., Klatt, S., Haas, E., Wassmann, R., Kiese, R., Butterbach-Bahl, K.: A new LandscapeDNDC biogeochemical module to predict CH4 and N2O emissions from lowland rice and upland cropping systems. Plant Soil 386, 125–149 (2015). https://doi.org/10.1007/s11104-014-2255-x

    Article  Google Scholar 

  13. Lighthill, M., Whitham, G.: On kinematic waves, part I. Flood movement in long rivers. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 229, 281–316 (1955)

    Article  MATH  Google Scholar 

  14. Molina-Herrera, S., Grote, R., Santabarbara-Ruiz, I., Kraus, D., Klatt, S., Haas, E., Kiese, R., Butterbach-Bahl, K.: Simulation of CO2 fluxes in European forest ecosystems with the coupled soil-vegetation process model LandscapeDNDC. Forests 6 (2015). https://doi.org/10.3390/f6061779

  15. Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12, 513–522 (1976)

    Article  Google Scholar 

  16. Narasimhan, T.: Buckingham, 1907: an appreciation. Vadose Zone J. 4, 434–441 (2005)

    Article  Google Scholar 

  17. Qu, Y., Duffy, C.: A semidiscrete finite volume formulation for multiprocess watershed simulation. Water Resour. Res. 43, W08,419 (2007). https://doi.org/10.1029/2006WR005752

    Article  Google Scholar 

  18. Richards, L.: Capillary conduction of liquids through porous mediums. Physics 1, 318–333 (1931)

    Article  MATH  Google Scholar 

  19. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2 edn. (2000)

    Google Scholar 

  20. Simmons, C.: Henry Darcy (1803–1858): immortalised by his scientific legacy. Hydrogeol. J. 16, 1023–1038 (2008). https://doi.org/10.1007/s10040-008-0304-3

    Article  Google Scholar 

  21. van Genuchten, M.: A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)

    Article  Google Scholar 

  22. Werner, C., Haas, E., Grote, R., Gauder, M., Graeff-Hönninger, S., Claupein, W., Butterbach-Bahl, K.: Biomass production potential from Populus short rotation systems in Romania. GCB Bioenergy 4(6), 642–653 (2012)

    Article  Google Scholar 

  23. Wlotzka, M., Heuveline, V.: A parallel solution scheme for multiphysics evolution problems using OpenPALM. EMCL Prepr. Ser. 1 (2014). https://doi.org/10.11588/emclpp.2014.01.13758

  24. Wlotzka, M., Heuveline, V., Klatt, S., Haas, E., Kraus, D., Butterbach-Bahl, K., Kraft, P., Breuer, L.: Simulation of land management effects on soil N2O emissions using a coupled hydrology-biogeochemistry model on the landscape scale. Handbook of Geomathematics (2014). https://doi.org/10.1007/978-3-642-27793-1_86-2

Download references

Acknowledgements

This work was supported by Deutsche Forschungsgemeinschaft (DFG) under grants HE-4760/4-1 and BU-1173/12-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Wlotzka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wlotzka, M. et al. (2017). Parallel Multiphysics Simulations Using OpenPALM with Application to Hydro-Biogeochemistry Coupling. In: Bock, H., Phu, H., Rannacher, R., Schlöder, J. (eds) Modeling, Simulation and Optimization of Complex Processes HPSC 2015 . Springer, Cham. https://doi.org/10.1007/978-3-319-67168-0_22

Download citation

Publish with us

Policies and ethics