Skip to main content

Decoding the Plastid Genome

  • Chapter
  • First Online:
Plant Bioinformatics

Abstract

Plastids are membrane-bound organelles which have their own genome, known as plastome, that encodes various genes involved in the production of energy for the cells. Similar to mitochondrial genomes, plastomes also exhibit disparate architectures with variable structure and content. At present, the number of sequenced plastid genomes exceeds 1400 in the genomic databases, which was possible with the recent advances in the sequencing technology. This genomic data of plastids has been extensively used to investigate evolutionary relationships between plants. Since the size of the plastid genome is smaller, therefore, sequencing of plastid genome is a cost-effective way to decipher information content within this genome.As the number of sequenced plastid genomes is becoming increasingly available in public databases, many potential applications of plastid genomes such as barcoding, gene loss, plastid DNA replication, and their role in synthetic biology(Tonti-Filippini et al. (2017) Plant J 90(4):808–818) are being proposed. In this chapter, we have summarized the currently available plastid genomes and reviewed the plastomes of some of the important plant families including grass and legumes.

The original version of this chapter was revised. An erratum to this chapter can be found at https://doi.org/10.1007/978-3-319-67156-7_19

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akhunov ED, Goodyear AW, Geng S, Qi LL, Echalier B et al (2003) The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res 13(5):753–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoki K, Matsumura T, Hattori T, Murakami N (2006) Chloroplast DNA phylogeography of Photinia glabra (Rosaceae) in Japan. Am J Bot 93:1852–1858

    Article  CAS  PubMed  Google Scholar 

  • Asaf S, Waqas M, Khan AL, Khan MA, Kang SM, Imran QM, Shahzad R, Bilal S, Yun BW, Lee IJ (2017) The complete chloroplast genome of wild rice (Oryza minuta) and its comparison to related species. Front Plant Sci 8:304. https://doi.org/10.3389/fpls.2017.00304. eCollection 2017. PubMed PMID: 28326093; PubMed Central PMCID: PMC5339285

    Article  PubMed  PubMed Central  Google Scholar 

  • Bibi S, Dahot MU, Khan IA, Khatrı A, Naqvi MH (2009) Study of genetic diversity in wheat (Triticum aestivum L.) using random amplified polymorphic DNA (RAPD) markers. Pak J Bot 41(3):1023–1027

    CAS  Google Scholar 

  • Cardoso D, Pennington RT, de Queiroz LP, Boatwright JS, van Wyk B-E, Wojciechowski MF et al (2013) Reconstructing the deep-branching relationships of the papilionoid legumes. S Afr J Bot 89:58–75

    Article  CAS  Google Scholar 

  • Carter PR, Hicks DR, Oplinger ES, Doll JD, Bundy LG, Schuler RT, Holmes BJ. Alternative field crops manual. University of Wisconsin-Extension (1989) Grain sorghum (Milo) Cooperative Extension. https://hort.purdue.edu/newcrop/afcm/sorghum.html

  • CBOL Plant Working Group (2009) A DNA barcode for land plants. Proc Natl Acad Sci U S A 106(31):12794–12797. https://doi.org/10.1073/pnas.0905845106. Epub 2009 Jul 30. PubMed PMID: 19666622; PubMed Central PMCID: PMC2722355

    Article  PubMed Central  Google Scholar 

  • Chalupska D, Lee HY, Faris JD, Evrard A, Chalhoub B et al (2008) Acc homoeoloci and the evolution of wheat genomes. Proc Natl Acad Sci 105(28):9691–9696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan CX, Bhattacharya D (2010) The origin of plastids. Nat Educ 3(9):84

    Google Scholar 

  • Cheng C, Tsuchimoto S, Ohtsubo H, Ohtsubo E (2002) Evolutionary relationships among rice species with AA genome based on SINE insertion analysis. Genes Genet Syst 77(5):323–334. PubMed PMID: 12441643

    Article  CAS  PubMed  Google Scholar 

  • Choi IS, Choi BH (2017) The distinct plastid genome structure of Maackia fauriei (Fabaceae: Papilionoideae) and its systematic implications for genistoids and tribe Sophoreae. PLoS One 12(4):e0173766. https://doi.org/10.1371/journal.pone.0173766. eCollection 2017. PubMed PMID: 28399123; PubMed Central PMCID: PMC5388331

    Article  PubMed  PubMed Central  Google Scholar 

  • Civan P, Brown TA (2016) Diversity patterns across 1,800 chloroplast genomes of wild (Oryza rufipogon Griff.) and cultivated rice (O. sativa L.) bioRxiv (http://www.biorxiv.org/content/biorxiv/early/2016/12/15/094482.full.pdf)

    Google Scholar 

  • Clayton WD, Renvoize SA (1986) Genera Graminum, grasses of the world, Kew Bull Additional Series XIII. Her Majesty’s Stationery Office, London

    Google Scholar 

  • Coissac E, Hollingsworth PM, Lavergne S, Taberlet P (2016) From barcodes to genomes: extending the concept of DNA barcoding. Mol Ecol 25(7):1423–1428. https://doi.org/10.1111/mec.13549. Epub 2016 Mar 14. PubMed PMID: 26821259

    Article  CAS  PubMed  Google Scholar 

  • Crop Plant Resources (2000) Sorghum: Sorghum bicolor. http://darwin.nmsu.edu/~molbio/plant/sorghum.html

  • Cusimano N, Wicke S (2016) Massive intracellular gene transfer during plastid genome reduction in nongreen Orobanchaceae. New Phytol 210(2):680–693. https://doi.org/10.1111/nph.13784. Epub 2015 Dec 16. PubMed PMID: 26671255

    Article  CAS  PubMed  Google Scholar 

  • Day A, Goldschmidt-Clermont M (2011) The chloroplast transformation toolbox: selectable markers and marker removal. Plant Biotechnol J 9(5):540–553. https://doi.org/10.1111/j.1467-7652.2011.00604.x. Epub 2011 Mar 23. Review. PubMed PMID: 21426476

    Article  CAS  PubMed  Google Scholar 

  • Dizkirici A, Kansu C, Onde S, Birsin M, Ozgen M, Kaya Z (2013) Phylogenetic relationships among Triticum L. and Aegilops L. species as genome progenitors of bread wheat based on sequence diversity in trnT-F region of chloroplast DNA. Genet Resour Crop Evol 60(8):2227–2240

    Article  Google Scholar 

  • Doyle JJ, Doyle JL, Ballenger JA, Dickson EE, Kajita T, Ohashi H (1997) A phylogeny of the chloroplast gene rbcL in the Leguminosae: taxonomic correlations and insights into the evolution of nodulation. Am J Bot 84:541–554

    Article  CAS  PubMed  Google Scholar 

  • Ennos R (1994) Estimating the relative rates of pollen and seed migration among plant populations. Heredity 72:250–259

    Article  Google Scholar 

  • Garber ED (1950) Cytotaxonomic studies in the genus Sorghum. Univ Calif Publ Bot 23:283–361

    Google Scholar 

  • Ge S, Sang T, Lu BR, Hong DY (1999) Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc Natl Acad Sci U S A 96(25):14400–14405. PubMed PMID: 10588717; PubMed Central PMCID: PMC24448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gogniashvili M, Naskidashvili P, Bedoshvili D, Kotorashvili A, Kotaria N, Beridze T (2015) Complete chloroplast DNA sequences of Zanduri wheat (Triticum spp.) Genet Resour Crop Evol 62:1269–1277

    Article  CAS  Google Scholar 

  • Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36(10):3420–3435. https://doi.org/10.1093/nar/gkn176. Epub 2008 Apr 29. PubMed PMID: 18445632; PubMed Central PMCID: PMC2425479

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo SB, Wei Y, Li X-Q, Liu K-Q, Huang F-K, Chen C-Q et al (2013) Development and identification of introgression lines from cross of Oryza sativa and Oryza minuta. Rice Sci 20:95–102

    Article  Google Scholar 

  • Han JE, Chung KH, Nemoto T, Choi BH (2010) Phylogenetic analysis of eastern Asian and eastern North American disjunct Lespedeza (Fabaceae) inferred from nuclear ribosomal ITS and plastid region sequences. Bot J Linn Soc 164:221–235

    Article  Google Scholar 

  • Heinrichs EA, Medrano FG, Rapusas HR, International Rice Research Institute (1985) Genetic evaluation for insect resistance in rice. International Rice Research Institute, Manila

    Google Scholar 

  • Howe CJ, Barbrook AC, Nisbet RE, Lockhart PJ, Larkum AW (2008) The origin of plastids. Philos Trans R Soc Lond Ser B Biol Sci 363(1504):2675–2685. https://doi.org/10.1098/rstb.2008.0050. PubMed PMID: 18468982; PubMed Central PMCID: PMC2606771

    Article  CAS  Google Scholar 

  • Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci 99(12):8133–8138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwamoto M, Nagashima H, Nagamine T, Higo H, Higo K (1999) p-SINE1-like intron of the CatA catalase homologs and phylogenetic relationships among AA-genome Oryza and related species. Theor Appl Genet 98:853–861

    Article  CAS  Google Scholar 

  • Jansen RK, Ruhlman TA (2012) Plastid genomes of seed plants. In: Bock R, Knoop V (eds) Genomics of chloroplasts and mitochondria, advances in photosynthesis and respiration. Springer, Berlin

    Google Scholar 

  • Jansen RK, Ruhlman TA (2012) Plastid genomes of seed plants. In: Bock R, Knoop V (eds) Genomics of chloroplasts and mitochondria. Springer Netherlands, Dordrecht, pp 103–126

    Chapter  Google Scholar 

  • Jansen RK, Kaittanis C, Saski C, Lee S-B, Tomkins J, Alverson AJ et al (2006) Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. BMC Evol Biol 6:e32

    Article  Google Scholar 

  • Jansen RK, Cai Z, Raubeson LA, Daniell H, Leebens-Mack J, Müller KF et al (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci U S A 104:19369–19374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen RK, Wojciechowski MF, Sanniyasi E, Lee S-B, Daniell H (2008) Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps12 and clpP intron losses among legumes (Leguminosae). Mol Phylogenet Evol 48:1204–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kajita T, Ohashi H, Tateishi Y, Bailey CD, Doyle JJ (2001) rbcL and legume phylogeny, with particular reference to Phaseoleae, Millettieae, and allies. Syst Bot 26:515–536

    Google Scholar 

  • Lee JH, Lee DH, Choi BH (2013) Phylogeography and genetic diversity of East Asian Neolitsea sericea (Lauraceae) based on variations in chloroplast DNA sequences. J Plant Res 126:193–202

    Article  PubMed  Google Scholar 

  • Lewis GP, Schrire BD, Mackinder B, Lock JM (eds) (2005) Legumes of the world. Richmond, Royal Botanic Gardens, Kew

    Google Scholar 

  • Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhang TC, Qiao Q, Ren Z, Zhao J, Yonezawa T, Hasegawa M, Crabbe MJ, Li J, Zhong Y (2013) Complete chloroplast genome sequence of holoparasite Cistanche deserticola (Orobanchaceae) reveals gene loss and horizontal gene transfer from its host Haloxylon ammodendron (Chenopodiaceae). PLoS One 8(3):e58747. https://doi.org/10.1371/journal.pone.0058747. Epub 2013 Mar 15. PubMed PMID: 23554920; PubMed Central PMCID: PMC3598846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magee AM, Aspinall S, Rice DW, Cusack BP, Sémon M, Perry AS, Stefanović S, Milbourne D, Barth S, Palmer JD, Gray JC, Kavanagh TA, Wolfe KH (2010) Localized hypermutation and associated gene losses in legume chloroplast genomes. Genome Res 20(12):1700–1710. https://doi.org/10.1101/gr.111955.110. Epub 2010 Oct 26. Erratum in: Genome Res. 2014 Jun;24(6):1052. PubMed PMID: 20978141; PubMed Central PMCID: PMC2989996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier RM, Neckermann K, Igloi GL, Kössel H (1995) Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol 251(5):614–628. PubMed PMID: 7666415

    Article  CAS  PubMed  Google Scholar 

  • Martin W, Kowallik KV (1999) Annotated English translation of Mereschkowsky’s 1905 paper ‘Uber Natur und Ursprung der Chromatophoren im Pflanzenreiche’ Eur. J Phycol 34:287–295

    Google Scholar 

  • Martin GE, Rousseau-Gueutin M, Cordonnier S, Lima O, Michon-Coudouel S, Naquin D, de Carvalho JF, Aïnouche M, Salmon A, Aïnouche A (2014) The first complete chloroplast genome of the Genistoid legume Lupinus luteus: evidence for a novel major lineage-specific rearrangement and new insights regarding plastome evolution in the legume family. Ann Bot 113(7):1197–1210. https://doi.org/10.1093/aob/mcu050. Epub 2014 Apr 25. PubMed PMID: 24769537; PubMed Central PMCID: PMC4030815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mereschkowsky C (1905) Ueber Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Centralbl 25:593–604

    Google Scholar 

  • Middleton CP, Senerchia N, Stein N, Akhunov ED, Keller B, Wicker T, Kilian B (2014) Sequencing of chloroplast genomes from wheat, barley, rye and their relatives provides a detailed insight into the evolution of the Triticeae tribe. PLoS One 9(3):e85761. https://doi.org/10.1371/journal.pone.0085761. eCollection 2014. PubMed PMID: 24614886; PubMed Central PMCID: PMC3948623

    Article  PubMed  PubMed Central  Google Scholar 

  • Molina J, Hazzouri KM, Nickrent D, Geisler M, Meyer RS, Pentony MM, Flowers JM, Pelser P, Barcelona J, Inovejas SA, Uy I, Yuan W, Wilkins O, Michel CI, Locklear S, Concepcion GP, Purugganan MD (2014) Possible loss of the chloroplast genome in the parasitic flowering plant Rafflesia lagascae (Rafflesiaceae). Mol Biol Evol 31(4):793–803. https://doi.org/10.1093/molbev/msu051. Epub 2014 Jan 23. PubMed PMID: 24458431; PubMed Central PMCID: PMC3969568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • National Sorghum Producers (2006) What is Sorghum? www.sorghumgrowers.com/Sorghum+101

  • Ogihara Y, Isono K, Kojima T, Endo A, Hanaoka M, Shiina T, Terachi T, Utsugi S, Murata M, Mori N, Takumi S, Ikeo K, Gojobori T, Murai R, Murai K, Matsuoka Y, Ohnishi Y, Tajiri H, Tsunewaki K (2002) Structural features of a wheat plastome as revealed by complete sequencing of chloroplast DNA. Mol Gen Genomics 266(5):740–746. Epub 2001 Nov 22. PubMed PMID: 11810247

    Article  CAS  Google Scholar 

  • Ohyama K, FukuzawaH KT, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322:572–574

    Article  CAS  Google Scholar 

  • Oldenburg DJ, Bendich AJ (2016) The linear plastid chromosomes of maize: terminal sequences, structures, and implications for DNA replication. Curr Genet 62(2):431–442. https://doi.org/10.1007/s00294-015-0548-0. Epub 2015 Dec 9. PubMed PMID: 26650613

    Article  CAS  PubMed  Google Scholar 

  • Olejniczak SA, Łojewska E, Kowalczyk T, Sakowicz T (2016) Chloroplasts: state of research and practical applications of plastome sequencing. Planta 244(3):517–527. https://doi.org/10.1007/s00425-016-2551-1. Epub 2016 Jun 3. Review. PubMed PMID: 27259501; PubMed Central PMCID: PMC4983300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orton LM, Burke SV, Wysocki WP, Duvall MR (2017) Plastid phylogenomic study of species within the genus Zea: rates and patterns of three classes of microstructural changes. Curr Genet 63(2):311–323. https://doi.org/10.1007/s00294-016-0637-8. Epub 2016 Aug 3. PubMed PMID: 27488804

    Article  CAS  PubMed  Google Scholar 

  • Petersen G, Cuenca A, Seberg O (2015) Plastome evolution in hemiparasitic mistletoes. Genome Biol Evol 7(9):2520–2532. https://doi.org/10.1093/gbe/evv165. PubMed PMID: 26319577; PubMed Central PMCID: PMC4607522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petit RJ, Vendramin GG (2007) Plant phylogeography based on organelle genes: an introduction. In: Weiss S, Ferrand N (eds) Phylogeography of southern European Refugia. Springer, Dordrecht, pp 23–97

    Chapter  Google Scholar 

  • Petit RJ, Brewer S, Bordács S, Burg K, Cheddadi R, Coart E et al (2002) Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. For Ecol Manage 156:49–74

    Article  Google Scholar 

  • Petit RJ, Duminil J, Fineschi S, Hampe A, Salvini D, Vendramin GG (2005) Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol 14(3):689–701. Review. PubMed PMID: 15723661

    Article  CAS  PubMed  Google Scholar 

  • Popescu GV, Noutsos C, Popescu SC (2016) Big data in plant science: resources and data mining tools for plant genomics and proteomics. Methods Mol Biol 1415:533–547. https://doi.org/10.1007/978-1-4939-3572-7_27. PubMed PMID: 27115651

    Article  CAS  PubMed  Google Scholar 

  • Renner O (1934) Die pflanzlichen Plastiden als selbständige Elemente der genetischen Konstitution. Ber Math-Physik Kl Sächs Akad Wiss Leipzig 86:241–266

    Google Scholar 

  • Rogalski M, do Nascimento Vieira L, Fraga HP, Guerra MP (2015) Plastid genomics in horticultural species: importance and applications for plant population genetics, evolution, and biotechnology. Front Plant Sci 6:586. https://doi.org/10.3389/fpls.2015.00586. eCollection 2015. Review. PubMed PMID: 26284102; PubMed Central PMCID: PMC4520007

    Article  PubMed  PubMed Central  Google Scholar 

  • Roquet C, Coissac É, Cruaud C, Boleda M, Boyer F, Alberti A, Gielly L, Taberlet P, Thuiller W, Van Es J, Lavergne S (2016). Understanding the evolution of holoparasitic plants: the complete plastid genome of the holoparasite Cytinus hypocistis (Cytinaceae). Ann Bot. pii: mcw135. [Epub ahead of print] PubMed PMID: 27443299; PubMed Central PMCID: PMC5055816

    Google Scholar 

  • Röschenbleck J, Wicke S, Weinl S, Kudla J, Müller KF (2017) Genus-wide screening reveals four distinct types of structural plastid genome organization in Pelargonium (Geraniaceae). Genome Biol Evol 9(1):64–76. https://doi.org/10.1093/gbe/evw271. PubMed PMID: 28172771; PubMed Central PMCID: PMC5381562

    PubMed  Google Scholar 

  • Ruhlman T, Jansen RK (2014) The plastid genomes of flowering plants. In: Maliga P (ed) Chloroplast biotechnology: methods and protocols. Humana Press, New York City, pp 3–38

    Chapter  Google Scholar 

  • Saski C, Lee SB, Fjellheim S, Guda C, Jansen RK, Luo H, Tomkins J, Rognli OA, Daniell H, Clarke JL (2007) Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. Theor Appl Genet 115(4):571–590. Epub 2007 May 30. Erratum in: Theor Appl Genet. 2007 Aug;115(4):591. Theor Appl Genet. 2007 Aug;115(4):591. PubMed PMID: 17534593; PubMed Central PMCID: PMC2674615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schimper AFW (1883a) Ueber die entwickelung der chlorophyllkoerner und farbkoerper. Bot Zeit 41:105–113

    Google Scholar 

  • Schimper AFW (1883b) Über die Entwicklung der Chlorophyllkörner und Farbkörper. Bot Zeitung 41(105):809

    Google Scholar 

  • Schwarz EN, Ruhlman TA, Sabir JSM, Hajrah NH, Alharbi NS, Al-Malki AL et al (2015) Plastid genome sequences of legumes reveal parallel inversions and multiple losses of rps16 in papilionoids. J Syst Evol 53:458–468

    Article  Google Scholar 

  • Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92(1):142–166. https://doi.org/10.3732/ajb.92.1.142. PubMed PMID: 21652394

    Article  CAS  PubMed  Google Scholar 

  • Shen L, Guan Q, Amin A, Zhu W, Li M, Li X, Zhang L, Tian J (2016) Complete plastid genome of Eriobotrya Japonica (Thunb.) Lindl and comparative analysis in Rosaceae. Spring 5(1):2036. eCollection 2016. PubMed PMID: 27995013; PubMed Central PMCID: PMC5127920

    Article  Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5(9):2043–2049. PubMed PMID: 16453699; PubMed Central PMCID: PMC1167080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith DR, Keeling PJ (2015) Mitochondrial and plastid genome architecture: reoccurring themes, but significant differences at the extremes. Proc Natl Acad Sci U S A 112(33):10177–10184. https://doi.org/10.1073/pnas.1422049112. Epub 2015 Mar 26. PubMed PMID: 25814499; PubMed Central PMCID: PMC4547224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith DR, Lee RW (2014) A plastid without a genome: evidence from the nonphotosynthetic green algal genus Polytomella. Plant Physiol 164(4):1812–1819. https://doi.org/10.1104/pp.113.233718. Epub 2014 Feb 21. PubMed PMID: 24563281; PubMed Central PMCID: PMC3982744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Straub SC, Parks M, Weitemier K, Fishbein M, Cronn RC, Liston A (2012) Navigating the tip of the genomic iceberg: next-generation sequencing for plant systematics. Am J Bot 99(2):349–364. https://doi.org/10.3732/ajb.1100335. Epub 2011 Dec 14. PubMed PMID: 22174336

    Article  CAS  PubMed  Google Scholar 

  • Stubbe W (1971) Origin and continuity of plastids. In: Reinert J, Ursprung H (eds) Origin and continuity of cell organelles, vol III. Springer, Berlin, pp 65–81

    Chapter  Google Scholar 

  • Stull GW, de Stefano RD, Soltis DE, Soltis PS (2015) Resolving basal lamiid phylogeny and the circumscription of Icacinaceae with a plastome-scale data set. Am J Bot 102:1794–1813

    Article  CAS  PubMed  Google Scholar 

  • Sugahara K, Kaneko Y, Ito S, Yamanaka K, Sakio H, Hoshizaki K et al (2011) Phylogeography of Japanese horse chestnut (Aesculus turbinata) in the Japanese Archipelago based on chloroplast DNA haplotypes. J Plant Res 124:75–83

    Article  PubMed  Google Scholar 

  • The Legume Phylogeny Working Group (2013) Legume phylogeny and classification in the 21st century: Progress, prospects and lessons for other species-rich clades. Taxon 62:217–248

    Article  Google Scholar 

  • Tong W, Kim TS, Park YJ (2016) Rice chloroplast genome variation architecture and phylogenetic dissection in diverse Oryza species assessed by whole-genome resequencing. Rice (N Y) 9(1):57. https://doi.org/10.1186/s12284-016-0129-y. Epub 2016 Oct 18. PubMed PMID: 27757948; PubMed Central PMCID: PMC5069220

    Article  Google Scholar 

  • Tonti-Filippini J, Nevill PG, Dixon K, Small I (2017) What can we do with 1000 plastid genomes? Plant J 90(4):808–818. https://doi.org/10.1111/tpj.13491. Epub 2017 Mar 30. PubMed PMID: 28112435

    Article  CAS  PubMed  Google Scholar 

  • Twyford AD, Ness RW (2016) Strategies for complete plastid genome sequencing. Mol Ecol Resour. https://doi.org/10.1111/1755-0998.12626. [Epub ahead of print] PubMed PMID: 27790830

  • Vaughan DA (1994) The wild relatives of rice: a genetic resources handbook. International Rice Research Institute, Manila

    Google Scholar 

  • Wambugu PW, Brozynska M, Furtado A, Waters DL, Henry RJ (2015) Relationships of wild and domesticated rices (Oryza AA genome species) based upon whole chloroplast genome sequences. Sci Rep 5:13957. https://doi.org/10.1038/srep13957. PubMed PMID: 26355750; PubMed Central PMCID: PMC4564799

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S, Gao CW, Gao LZ (2016) Plastid genome sequence of an ornamental and editable fruit tree of Rosaceae, Prunus mume. Mitochondrial DNA A DNA Mapp Seq Anal 27(6):4407–4408. Epub 2015 Oct 15. PubMed PMID: 26469875

    Google Scholar 

  • Waters DL, Nock CJ, Ishikawa R, Rice N, Henry RJ (2012) Chloroplast genome sequence confirms distinctness of Australian and Asian wild rice. Ecol Evol 2(1):211–217. https://doi.org/10.1002/ece3.66. PubMed PMID: 22408737; PubMed Central PMCID: PMC3297189

    Article  PubMed  PubMed Central  Google Scholar 

  • Wicke S, Müller KF, de Pamphilis CW, Quandt D, Wickett NJ, Zhang Y, Renner SS, Schneeweiss GM (2013) Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants of the broomrape family. Plant Cell 25(10):3711–3725. https://doi.org/10.1105/tpc.113.113373. Epub 2013 Oct 18. PubMed PMID: 24143802; PubMed Central PMCID: PMC3877813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams AV, Miller JT, Small I, Nevill PG, Boykin LM (2016) Integration of complete chloroplast genome sequences with small amplicon datasets improves phylogenetic resolution in Acacia. Mol Phylogenet Evol 96:1–8

    Article  CAS  PubMed  Google Scholar 

  • Wolfe KH, Morden CW, Palmer JD (1992) Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci U S A 89(22):10648–10652. PubMed PMID: 1332054; PubMed Central PMCID: PMC50398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu ZQ, Ge S (2012) The phylogeny of the BEP clade in grasses revisited: evidence from the whole-genome sequences of chloroplasts. Mol Phylogenet Evol 62(1):573–578. https://doi.org/10.1016/j.ympev.2011.10.019. Epub 2011 Nov 10. PubMed PMID: 22093967

    Article  PubMed  Google Scholar 

  • Wysocki WP, Clark LG, Attigala L, Ruiz-Sanchez E, Duvall MR (2015) Evolution of the bamboos (Bambusoideae; Poaceae): a full plastome phylogenomic analysis. BMC Evol Biol 15:50. https://doi.org/10.1186/s12862-015-0321-5. PubMed PMID: 25887467; PubMed Central PMCID: PMC4389303

    Article  PubMed  PubMed Central  Google Scholar 

  • Wysocki WP, Burke SV, Swingley WD, Duvall MR (2016) The first complete plastid genome from Joinvilleaceae (J. ascendens; Poales) shows unique and unpredicted rearrangements. PLoS One 11(9):e0163218. https://doi.org/10.1371/journal.pone.0163218. eCollection 2016. Erratum in: PLoS One. 2016 Nov 8;11(11):e0166504. PubMed PMID: 27658044; PubMed Central PMCID: PMC5033401

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang JC, Joo M, So S, Yi DK, Shin CH, Lee YM, Choi K (2016) The complete plastid genome sequence of Picea jezoensis (Pinaceae: Piceoideae). Mitochondrial DNA A DNA Mapp Seq Anal 27(5):3761–3763. https://doi.org/10.3109/19401736.2015.1079894. Epub 2015 Sep 2. PubMed PMID: 26332576

    CAS  PubMed  Google Scholar 

  • Zhang D, Li W, Gao C, Liu Y, Gao LZ (2016a) The complete plastid genome sequence of Panax notoginseng, a famous traditional Chinese medicinal plant of the family Araliaceae. Mitochondrial DNA A DNA Mapp Seq Anal 27(5):3438–3439. https://doi.org/10.3109/19401736.2015.1063131. Epub 2015 Sep 12. PubMed PMID: 26365031

    CAS  PubMed  Google Scholar 

  • Zhang J, Luo W, Zhao Y, Xu Y, Song S, Chong K (2016b) Comparative metabolomic analysis reveals a reactive oxygen species-dominated dynamic model underlying chilling environment adaptation and tolerance in rice. New Phytol 211(4):1295–1310. https://doi.org/10.1111/nph.14011. Epub 2016 May 16. PubMed PMID: 27198693

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Li K, Gao J, Liu Y, Gao L (2016c) The complete plastid genome sequence of the wild rice Zizania latifolia and comparative chloroplast genomics of the rice Tribe Oryzeae, Poaceae. Front Ecol Evol 4:88

    Article  Google Scholar 

  • Zhang H, Hall N, McElroy JS, Lowe EK, Goertzen LR (2017) Complete plastid genome sequence of goosegrass (Eleusine indica) and comparison with other Poaceae. Gene 600:36–43. https://doi.org/10.1016/j.gene.2016.11.038. Epub 2016 Nov 27. PubMed PMID: 27899326

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Rehman Hakeem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malik, A., Hakeem, K.R. (2017). Decoding the Plastid Genome. In: Hakeem, K., Malik, A., Vardar-Sukan, F., Ozturk, M. (eds) Plant Bioinformatics. Springer, Cham. https://doi.org/10.1007/978-3-319-67156-7_11

Download citation

Publish with us

Policies and ethics