Skip to main content

Distributed Control Synthesis Using Euler’s Method

  • Conference paper
  • First Online:
Reachability Problems (RP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10506))

Included in the following conference series:

Abstract

In a previous work, we explained how Euler’s method for computing approximate solutions of systems of ordinary differential equations can be used to synthesize safety controllers for sampled switched systems. We continue here this line of research by showing how Euler’s method can also be used for synthesizing safety controllers in a distributed manner. The global system is seen as an interconnection of two (or more) sub-systems where, for each component, the sub-state corresponding to the other component is seen as an “input”; the method exploits (a variant of) the notions of incremental input-to-state stability ( \(\delta \) -ISS) and ISS Lyapunov function. We illustrate this distributed control synthesis method on a building ventilation example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Such a bound has been used in hybridization methods: \(error(t)\,=\,\frac{E_D}{L}(e^{Lt}-1)\) [2, 4], where \(E_D\) gives the maximum difference of the derivatives of the original and approximated systems.

  2. 2.

    Given an initial point \(x\in R\), the induced control \(\sigma \) corresponds to a sequence of patterns \(\pi _{i_1},\pi _{i_2},\dots \) defined as follows: Since \(x\in R\), there exists a a point \(\tilde{x}_{i_1}\) with \(1\le i_1\le m\) such that \(x\in B(\tilde{x}_{i_1},\delta ^0)\); then using pattern \(\pi _{i_1}\), one has: \(\phi _{\pi _{i_1}}(k_{i_1}\tau ;x)\in R\). Let \(x'=\phi _{\pi _{i_1}}(k_{i_1}\tau ;x)\); there exists a point \(\tilde{x}_{i_2}\) with \(1\le i_2\le m\) such that \(x'\in B(\tilde{x}_{i_2},\delta ^0)\), etc.

  3. 3.

    So \(T=T_1\times T_2\) with: \(T_1=B(c_1,\varDelta )\), \(T_2=B(c_2,\varDelta )\).

References

  1. Angeli, D.: A Lyapunov approach to incremental stability. In: Proceeding of IEEE Conference on Decision and Control, vol. 3, pp. 2947–2952 (2000)

    Google Scholar 

  2. Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of nonlinear systems. Acta Inform. 43(7), 451–476 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atkinson, K.E.: An Introduction to Numerical Analysis. Wiley, Hoboken (2008)

    Google Scholar 

  4. Chen, X., Sankaranarayanan, S.: Decomposed reachability analysis for nonlinear systems. In: Proceeding of IEEE Real-Time Systems Symposium, pp. 13–24 (2016)

    Google Scholar 

  5. Dahlquist, G.: Error analysis for a class of methods for stiff non-linear initial value problems. In: Watson, G.A. (ed.) Numerical Analysis. LNM, vol. 506, pp. 60–72. Springer, Heidelberg (1976). doi:10.1007/BFb0080115

    Chapter  Google Scholar 

  6. Dallal, E., Tabuada, P.: On compositional symbolic controller synthesis inspired by small-gain theorems. In: Proceeding of IEEE Conference on Decision and Control, pp. 6133–6138 (2015)

    Google Scholar 

  7. Donchev, T., Farkhi, E.: Stability and euler approximation of one-sided lipschitz differential inclusions. SIAM J. Control Optim. 36(2), 780–796 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eaton, J.W., Bateman, D., Hauberg, S.: Gnu Octave. Network theory Ltd., London (1997)

    Google Scholar 

  9. Hespanha, J.P., Liberzon, D., Teel, A.R.: Lyapunov conditions for input-to-state stability of impulsive systems. Automatica 44(11), 2735–2744 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jiang, Z.-P., Teel, A.R., Praly, L.: Small-gain theorem for ISS systems and applications. Math. Control Sig. Syst. 7(2), 95–120 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jiang, Z.-P., Mareels, I.M.Y., Wang, Y.: A Lyapunov formulation of the nonlinear small-gain theorem for interconnected iss systems. Automatica 32(8), 1211–1215 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kim, E.S., Arcak, M., Seshia, S.A.: Compositional controller synthesis for vehicular traffic networks. In: Proceeding of IEEE Annual Conference on Decision and Control, pp. 6165–6171 (2015)

    Google Scholar 

  13. Larsen, K.G., Mikučionis, M., Muniz, M., Srba, J., Taankvist, J.H.: Online and compositional learning of controllers with application to floor heating. In: Proceeding of International Conference Tools and Algorithms for Construction and Analysis of Systems (2016)

    Google Scholar 

  14. Le Coënt, A., De Vuyst, F., Chamoin, L., Fribourg, L.: Control synthesis of nonlinear sampled switched systems using Euler’s method. In: Proceeding of International Workshop on Symbolic and Numerical Methods for Reachability Analysis of EPTCS, vol. 247, pp. 18–33. Open Publishing Association (2017)

    Google Scholar 

  15. Le Coënt, A., Fribourg, L., Markey, N., De Vuyst, F., Chamoin, L.: Distributed synthesis of state-dependent switching control. In: Larsen, K.G., Potapov, I., Srba, J. (eds.) RP 2016. LNCS, vol. 9899, pp. 119–133. Springer, Cham (2016). doi:10.1007/978-3-319-45994-3_9

    Chapter  Google Scholar 

  16. Meyer, P.-J.: Invariance and symbolic control of cooperative systems for temperature regulation in intelligent buildings. Université Grenoble Alpes, Theses (2015)

    Google Scholar 

  17. Meyer, P.-J., Nazarpour, H., Girard, A., Witrant, E.: Experimental implementation of UFAD regulation based on robust controlled invariance. In: Proceeding of European Control Conference, pp. 1468–1473 (2014)

    Google Scholar 

  18. Yang, G., Liberzon, D.: A lyapunov-based small-gain theorem for interconnected switched systems. Syst. Control Lett. 78, 47–54 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Fribourg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Le Coënt, A., Alexandre dit Sandretto, J., Chapoutot, A., Fribourg, L., De Vuyst, F., Chamoin, L. (2017). Distributed Control Synthesis Using Euler’s Method. In: Hague, M., Potapov, I. (eds) Reachability Problems. RP 2017. Lecture Notes in Computer Science(), vol 10506. Springer, Cham. https://doi.org/10.1007/978-3-319-67089-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67089-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67088-1

  • Online ISBN: 978-3-319-67089-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics