Skip to main content

A Cellular Automaton Based System for Traffic Analyses on the Roundabout

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2017)

Abstract

The paper presents an analysis of the impact of road conditions, the distance between vehicles and the number of pedestrians on the roundabout capacity. The study was based on a developed cellular automaton (CA) model and the implemented simulation system. The developed CA model extends the basic traffic model with a braking mechanism. It also reflects the actual technical conditions of vehicles (acceleration and braking depending on the dimensions and functions of the vehicle, as well as the driving at a roundabout of different speeds that are appropriate for the size of the vehicle). The study was based on the example of a two-lane roundabout with four two-lane inlet roads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Webpage Created (2013). https://nextstl.com/2013/10/mythbusters-tackles-four-way-stop-v-roundabout-traffic-throughput/. Accessed Jan 2017

  2. Transportation Research Board of the National Acad: National Cooperative Highway Research Program Report 572 - Roundabouts in the Unites States (2007)

    Google Scholar 

  3. Leaf, W.A., Preusser, D.F.: Literature review on vehicle travel speeds and pedestrian injuries, US Department of Transportation, National Highway Traffic Safety Administration (1999)

    Google Scholar 

  4. Brude, U., Larsson, J.: What roundabout design provides the highest possible safety? Nordic Road Transp. Res. 12(2), 17–21 (2000)

    Google Scholar 

  5. Macioszek, E.: Relationship between vehicle stream in the circular roadway of a one-lane roundabout and traffic volume on the roundabout at peak hour. In: Mikulski, J. (ed.) TST 2014. CCIS, vol. 471, pp. 110–119. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45317-9_12

    Chapter  Google Scholar 

  6. Macioszek, E., Sierpiński, G., Czapkowski, L.: Problems and issues with running the cycle traffic through the roundabouts. In: Mikulski, J. (ed.) TST 2010. CCIS, vol. 104, pp. 107–114. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16472-9_11

    Chapter  Google Scholar 

  7. Macioszek, E.: Analysis of significance of differences between psychotechnical parameters for drivers at the entries to one-lane and turbo roundabouts in Poland. In: Sierpiński, G. (ed.) Intelligent Transport Systems and Travel Behaviour. AISC, vol. 505, pp. 149–161. Springer, Cham (2017). doi:10.1007/978-3-319-43991-4_13

    Chapter  Google Scholar 

  8. Wang, R., Liu, M.: A realistic cellular automata model to simulate traffic flow at urban roundabouts. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J.J. (eds.) ICCS 2005. LNCS, vol. 3515, pp. 420–427. Springer, Heidelberg (2005). doi:10.1007/11428848_56

    Chapter  Google Scholar 

  9. Nagel, K., Schreckenberg, M.: A cellular automata model for freeway traffic. J. de Phys. I 2, 2221–2229 (1992)

    Google Scholar 

  10. Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329, 199–329 (2000)

    Article  MathSciNet  Google Scholar 

  11. Fellendorf, M.: VISSIM: a microscopic simulation tool to evaluate actuated signal control including bus priority. In: 64th Institute Transportation Engineers (ITE) Annual Meeting, Technical paper, Session 32, Dallas, TX, pp. 1–9 (1994)

    Google Scholar 

  12. Barcelo, J., Ferrer, J.L., Montero, L.: AIMSUN: Advanced Interactive Microscopic Simulator for Urban Networks, User‘s Manual, Departament d ‘Estadística i Investigació Operativa, UPC (1997)

    Google Scholar 

  13. Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and applications of SUMO-simulation of urban mobility. Int. J. Adv. Syst. Meas. 5, 128–138 (2012)

    Google Scholar 

  14. Popescu, M.C., Ranea, C., Grigoriu, M.: Solutions for traffic lights intersections control. In: Proceedings of the 10th WSEAS (2010)

    Google Scholar 

  15. Han, X., Sun, H.: The implementation of traffic signal light controlled by PLC. J. Chang. Inst. Opt. Fine Mech. 4, 029 (2003)

    Google Scholar 

  16. Kołopieńczyk, M., Andrzejewski, G., Zając, W.: Block programming technique in traffic control. In: Mikulski, J. (ed.) TST 2013. CCIS, vol. 395, pp. 75–80. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41647-7_10

    Chapter  Google Scholar 

  17. Jaszczak, S., Małecki, K.: Hardware and software synthesis of exemplary crossroads in a modular programmable controller. Prz. Elektrotech. 89(11), 121–124 (2013)

    Google Scholar 

  18. Sierpiński, G.: Theoretical model and activities to change the modal split of traffic. In: Mikulski, J. (ed.) TST 2012. CCIS, vol. 329, pp. 45–51. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34050-5_6

    Chapter  Google Scholar 

  19. Sierpiński, G.: Travel behaviour and alternative modes of transportation. In: Mikulski, J. (ed.) TST 2011. CCIS, vol. 239, pp. 86–93. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24660-9_10

    Chapter  Google Scholar 

  20. Karoń, G., Mikulski, J.: Transportation systems modelling as planning, organisation and management for solutions created with ITS. In: Mikulski, J. (ed.) TST 2011. CCIS, vol. 239, pp. 277–290. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24660-9_32

    Chapter  Google Scholar 

  21. Małecki, K., Pietruszka, P., Iwan, S.: Comparative analysis of selected algorithms in the process of optimization of traffic lights. In: Nguyen, N.T., Tojo, S., Nguyen, L.M., Trawiński, B. (eds.) ACIIDS 2017. LNCS, vol. 10192, pp. 497–506. Springer, Cham (2017). doi:10.1007/978-3-319-54430-4_48

    Chapter  Google Scholar 

  22. Webpage: http://traffic-simulation.de. Accessed Dec 2016

  23. Nagel, K., Wolf, D.E., Wagner, P., Simon, P.M.: Two-lane traffic rules for cellular automata: a systematic approach. Phys. Rev. E 58(2), 1425–1437 (1998)

    Article  Google Scholar 

  24. Biham, O., Middleton, A.A., Levine, D.: Phys. Rev. A 46, 6124 (1992)

    Article  Google Scholar 

  25. Chowdhury, D., Schadschneider, A.: Self-organization of traffic jams in cities: effects of stochastic dynamics and signal periods. Phys. Rev. E 59, 1311–1314 (1999)

    Article  Google Scholar 

  26. Małecki, K., Iwan, S.: Development of cellular automata for simulation of the crossroads model with a traffic detection system. In: Mikulski, J. (ed.) TST 2012. CCIS, vol. 329, pp. 276–283. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34050-5_31

    Chapter  Google Scholar 

  27. Hartman, D.: Head leading algorithm for urban traffic modelling. Positions 2, 1 (2004)

    Google Scholar 

  28. Gwizdałła, T.M., Grzebielucha, S.: The traffic flow through different form of intersections. In: International Conference on Computer Information Systems and Industrial Management Applications (CISIM), pp. 299–304. IEEE (2010)

    Google Scholar 

  29. Belz, N.P., Aultman-Hall, L., Montague, J.: Influence of priority taking and abstaining at single-lane roundabouts using cellular automata. Transp. Res. Part C: Emerg. Technol. 69, 134–149 (2016)

    Article  Google Scholar 

  30. Wang, R., Ruskin, H.: Modeling traffic flow at a single-lane urban roundabout. Comput. Phys. Commun. 147, 570–576 (2002)

    Article  Google Scholar 

  31. Lakouari, N., Ez-Zahraouy, H., Benyoussef, A.: Traffic flow behaviour at a single lane roundabout as compared to traffic circle. Phys. Lett. Sect. A: Gen. At. Solid State Phys. 378(43), 3169–3176 (2014)

    Article  Google Scholar 

  32. Belz, N.P., Aultman-Hall, L., Lee, B.H.Y., Gårder, P.E.: An event-based framework for non-compliant driver behavior at single-lane roundabouts. Transp. Res. Rec.: J. Transp. Res. Board Nat. Acad. 2402, 38–46 (2014). Washington, DC

    Article  Google Scholar 

  33. Wagner, P., Nagel, K., Wolf, D.: Realistic multilane traffic rule for cellular automata. Phys. A 234, 687–698 (1997)

    Article  Google Scholar 

  34. Wang, R., Ruskin, H.J.: Modelling traffic flow at multi-lane urban roundabouts. Int. J. Mod. Phys. C 17(5), 693–710 (2006)

    Article  Google Scholar 

  35. Schroeder, B., Rouphail, N., Salamati, K., Bugg, Z.: Effect of pedestrian impedance on vehicular capacity at multilane roundabouts with consideration of crossing treatments. Transp. Res. Rec.: J. Transp. Res. Board Nat. Acad. 2312(10), 14–24 (2012)

    Article  Google Scholar 

  36. Was, J.: Cellular automata model of pedestrian dynamics for normal and evacuation conditions. In: Proceedings of the 5th International Conference on Intelligent Systems Design and Applications, ISDA 2005, pp. 154–159. IEEE (2005)

    Google Scholar 

  37. Wąs, J., Gudowski, B., Matuszyk, P.J.: New cellular automata model of pedestrian representation. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 724–727. Springer, Heidelberg (2006). doi:10.1007/11861201_88

    Chapter  Google Scholar 

  38. Webpage: http://prawko-torun.pl/droga-zatrzymania-a-czas-reakcji-kierowcy. Accessed Nov 2016

  39. Bułka, D., Walczak, S., Wolak, S.: Braking process - legal and technical aspects in terms of simulation and analysis. In: Proceedings of the 3rd Conference on Rozwój techniki samochodowej a ubezpieczenia komunikacyjne (2006). (in Polish)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Małecki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Małecki, K., Wątróbski, J., Wolski, W. (2017). A Cellular Automaton Based System for Traffic Analyses on the Roundabout. In: Nguyen, N., Papadopoulos, G., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds) Computational Collective Intelligence. ICCCI 2017. Lecture Notes in Computer Science(), vol 10449. Springer, Cham. https://doi.org/10.1007/978-3-319-67077-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67077-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67076-8

  • Online ISBN: 978-3-319-67077-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics