Skip to main content

Role of Biocathodes in Bioelectrochemical Systems

  • Chapter
  • First Online:
Microbial Fuel Cell

Abstract

Environmental damage, depleting fossil fuels and energy security are major factors driving intensive research efforts to develop carbon neutral or carbon negative technologies which can be used to produce electricity and chemicals. Technologies under development to achieve this goal include those based on bioelectrochemical, biological, thermal and chemical processes. Evolving technologies employing biological as well as electrochemical principles are grouped in the bioelectrochemical systems (BESs) category. The main focus of this chapter is on biocathodes used in BESs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Almeida, C., Azevedo, N. F., Santos, S., Keevil, C. W., & Vieira, M. J. (2011). Discriminating multi-species populations in biofilms with peptide nucleic acid fluorescence in-situ hybridization (PNA FISH). PloS One, 6(3), e14786.

    Article  CAS  Google Scholar 

  • Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R., & Stahl, D. A. (1990). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Applied and Environmental Microbiology, 56(6), 1919–1925.

    CAS  Google Scholar 

  • Amann, R. I., Ludwig, W., & Schleifer, K. H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 59(1), 143–169.

    CAS  Google Scholar 

  • Barton, L. L., Goulhen, F., Bruschi, M., Woodards, N. A., Plunkett, R. M., & Rietmeijer, F. J. M. (2007). The bacterial metallome: Composition and stability with specific reference to the anaerobic bacterium Desulfovibrio desulfuricans. Biometals, 20, 291–302.

    Article  CAS  Google Scholar 

  • Behera, M., Jana, P. S., & Ghangrekar, M. M. (2010). Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode. Bioresource Technology, 101(4), 1183–1189.

    Article  CAS  Google Scholar 

  • Berk, R. S., & Canfield, J. H. (1964). Bioelectrochemical energy conversion. Applied Microbiology, 12, 10–12.

    CAS  Google Scholar 

  • Blanchet, E., Pécastaings, B., Erable, B., Roques, C., & Bergel, A. (2014). Protons accumulation during anodic phase turned to advantage for oxygen reduction during cathodic phase in reversible bioelectrodes. Bioresource Technology, 173, 224–230.

    Article  CAS  Google Scholar 

  • Bond, D. R., & Lovley, D. R. (2003). Electricity production by Geobacter sulfurreducens attached to electrodes. Applied Environmental Microbiology, 69, 1548–1555.

    Article  CAS  Google Scholar 

  • Breuer, M., Rosso, K. M., Blumberger, J., & Butt, J. N. (2015). Multi-heam cytochromes in Shewanella oneidensis MR-1: Structures, functions and opportunities. Journal of Royal Society Interface, 12(102), 20141117.

    Article  CAS  Google Scholar 

  • Busscher, H. J., & Weerkamp, A. H. (1987). Specific and non-specific interactions in bacterial adhesion to solid substrata. FEMS Microbiology Letters, 46(2), 165–173.

    Article  CAS  Google Scholar 

  • Cai, J., Zheng, P., Qaisar, M., Xing, Y. (2014). Effect of operating modes on simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell. Journal of Industrial Microbiology and Biotechnology, 41(5), 795–802.

    Google Scholar 

  • Campo, G. D. A., Cañizares, P., Rodrigo, M. A., Fernández, F. J., & Lobato, J. (2013). Microbial fuel cell with an algae-assisted cathode: A preliminary assessment. Journal of Power Sources, 242, 638–645.

    Article  CAS  Google Scholar 

  • Cao, X., Huang, X., Liang, P., Boon, N., Fan, M., Zhang, L., & Zhang, X. (2009). A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction. Energy and Environmental Science, 2(5), 498–501.

    Article  CAS  Google Scholar 

  • Carbajosa, S., Malki, M., Caillard, R., Lopez, M. F., Palomares, F. J., Martín-Gago, J. A., et al. (2010). Electrochemical growth of Acidithiobacillus ferrooxidans on a graphite electrode. Biosensors and Bioelectronics, 26(2), 877–880.

    Article  CAS  Google Scholar 

  • Chen, G. W., Choi, S. J., Lee, T. H., Lee, G. Y., Cha, J. H., & Kim, C. W. (2008). Application of biocathode in microbial fuel cells: Cell performance and microbial community. Applied Microbiology and Biotechnology, 79(3), 379–388.

    Article  CAS  Google Scholar 

  • Chen, G. W., Choi, S. J., Lee, T. H., Lee, G. Y., Cha, J. H., & Kim, C. W. (2010). Microbial community dynamics and electron transfer of a biocathode in microbial fuel cells. Korean Journal of Chemical Engineering, 27(5), 1513–1520.

    Article  CAS  Google Scholar 

  • Choi, O., & Sang, B.-I. (2016). Extracellular electron transfer from cathode to microbes: Application for biofuel production. Biotechnology for Biofuels, 9, 11.

    Article  CAS  Google Scholar 

  • Chung, K., Fujiki, I., & Okabe, S. (2011). Effect of formation of biofilms and chemical scale on the cathode electrode on the performance of a continuous two-chamber microbial fuel cell. Bioresource Technology, 102(1), 355–360.

    Article  CAS  Google Scholar 

  • Clauwaert, P., Rabaey, K., Aelterman, P., Schamphelaire, D. L., Pham, H. T., Boeckx, P., et al. (2007a). Biological denitrification in microbial fuel cells. Environment Science and Technology, 41, 3354–3360.

    Article  CAS  Google Scholar 

  • Clauwaert, P., van der Ha, D., Boon, N., Verbeken, K., Verhaege, M., & Verstrate, W. (2007b). Open air biocathodes enables effective electricity generation with microbial fuel cells. Environmental Science and Technology, 41, 7564–7569.

    Article  CAS  Google Scholar 

  • Clauwaert, P., Desloover, J., Shea, C., Nerenberg, R., Boon, N., & Verstraete, W. (2009). Enhanced nitrogen removal in bio-electrochemical systems by pH control. Biotechnology Letters, 31(10), 1537–1543.

    Article  CAS  Google Scholar 

  • Coma, M., Puig, S., Pous, N., Balaguer, M. D., & Colprim, J. (2013). Biocatalysed sulphate removal in a BES cathode. Bioresource Technology, 198, 218–223.

    Article  CAS  Google Scholar 

  • Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., & Lappin-Scott, H. M. (1995). Microbial biofilms. Annual Review of Microbiology, 49, 711–745.

    Article  CAS  Google Scholar 

  • Dinh, H. T., Kuever, J., Mussmann, M., Hassel, A. W., Stratmann, M., & Widdel, F. (2004). Iron corrosion by novel anaerobic microorganisms. Nature, 427, 829–832.

    Article  CAS  Google Scholar 

  • Du, Y., Feng, Y., Dong, Y., Qu, Y., Liu, J., Zhou, X., & Ren, N. (2014). Coupling interaction of cathodic reduction and microbial metabolism in aerobic biocathode of microbial fuel cell. RSC Advances, 4, 34350–34355.

    Article  CAS  Google Scholar 

  • Dumas, C., Basseguy, R., & Bergel, A. (2008). Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes. Electrochimica Acta, 53, 2494–2500.

    Article  CAS  Google Scholar 

  • Dumont, M. G., & Murrell, J. C. (2005). Stable isotope probing-linking microbial identity to function. Nature Reviews Microbiology, 3(6), 499–504.

    Article  CAS  Google Scholar 

  • El-Mekawy, A., Hegab, H. M., Vanbroekhoven, K., & Pant, D. (2014). Techno-productive potential of photosynthetic microbial fuel cells through different configurations. Renewable and Sustainable Energy Reviews, 39, 617–627.

    Article  CAS  Google Scholar 

  • El-Naggar, M. Y., Wanger, G., Leung, K. M., Yuzvinsky, T. D., Southam, G., Yang, J., et al. (2010). Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proceedings of the National Academy of Sciences U S A, 107(42), 18127–18131.

    Article  CAS  Google Scholar 

  • Freguia, S., Tsujimura, S., & Kano, K. (2010). Electron transfer pathways in microbial oxygen biocathodes. Electrochimica Acta, 55, 813–818.

    Article  CAS  Google Scholar 

  • Gajda, I., Greenman, J., Melhuish, C., & Ieropoulos, I. (2013). Photosynthetic cathodes for microbial fuel cells. International Journal of Hydrogen Energy, 38, 11559–11564.

    Article  CAS  Google Scholar 

  • Geelhoed, J. S., & Stams, A. J. M. (2011). Electricity-assisted biological hydrogen production from acetate by Geobacter sulfurreducens. Environmental Science and Technology, 45(2), 815–820.

    Google Scholar 

  • Goris, J., Konstantinidis, K. T., Klappenbach, J. A., Coenye, T., Vandamme, P., & Tiedje, J. M. (2007). DNA-DNA hybridisation values and their relationships to whole-genome sequence similarities. International Journal of Systematic and Evolutionary Microbiology, 57, 81–91.

    Article  CAS  Google Scholar 

  • Guiral-Brugna, M., Giudici-Orticoni, M. T., Bruschi, M., & Bianco, P. (2001). Electrocatalysis of the hydrogen production by [Fe] hydrogenase from Desulfovibrio vulgaris Hildenborough. Journal of Electroanalytical Chemistry, 510(1–2), 136–143.

    Article  CAS  Google Scholar 

  • Hammes, F., Berney, M., Wang, Y., Vital, M., Köster, O., & Egli, T. (2008). Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes. Water Research, 42(1), 269–277.

    Article  CAS  Google Scholar 

  • Heidelberg, J. F., Seshadri, R., Haveman, S. A., Hemme, C. L., Paulsen, I. T., Kolonay, J. F., et al. (2004). The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nature Biotechnology, 22, 554–559.

    Article  CAS  Google Scholar 

  • Hoffman, R. (1988). Applications of the modulation contrast microscope. International Laboratory, 18, 32–39.

    Google Scholar 

  • Holmes, D. E., Chaudhuri, S. K., Nevin, K. P., Mehta, T., Methé, B. A., Liu, A., Ward, J. E., Woodard, T. L., Webster, J., & Lovley, D. R. (2006). Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. Environmental Microbiology, 8, 1805–1815.

    Article  CAS  Google Scholar 

  • Huang, L., Regan, J. M., & Quan, X. (2011). Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresource Technology, 102(1), 316–323.

    Article  CAS  Google Scholar 

  • Ivleva, N. P., Wagner, M., Horn, H., Niessner, R., & Haisch, C. (2008). In-situ surface-enhanced Raman scattering analysis of biofilm. Analytical Chemistry, 80(22), 8538–8544.

    Article  CAS  Google Scholar 

  • Jain, A., Gupta, Y., Agrawal, R., Khare, P., & Jain, S. K. (2007). Biofilms – A microbial life perspective: A critical review. Critical Reviews on Therapeutic Drug Carrier System, 24, 393–443.

    Article  CAS  Google Scholar 

  • Jeremiasse, A. W., Hamelers, H. V. M., & Buisman, C. J. N. (2010). Microbial electrolysis cell with a microbial biocathode. Bioelectrochemistry, 78, 39–43.

    Article  CAS  Google Scholar 

  • Jourdin, L., Freguia, S., Donose, B. C., Chen, J., Wallace, G. G., Keller, J., & Flexer, V. (2014). A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. Journal of Materials Chemistry A, 2(32), 13093.

    Article  CAS  Google Scholar 

  • Jurtshuk, P. Jr. (1996). Chapter 4: Bacterial metabolism. In S. Baron (Ed.), Medical microbiology (4th ed.). Galveston: University of Texas Medical Branch at Galveston. Available from: http://www.ncbi.nlm.nih.gov/books/NBK7919/

  • Kerstens, M., Boulet, G., Clais, S., Lanckacker, E., Delputte, P., Maes, L., & Cos, P. (2015). A flow cytometric approach to quantify biofilms. Folia Microbiologica, 60(4), 335–342.

    Article  CAS  Google Scholar 

  • Kim, Y., & Logan, B. E. (2013). Microbial desalination cells for energy production and desalination. Desalination, 308, 122–130.

    Article  CAS  Google Scholar 

  • Kim, B. H., & Zeikus, J. G. (1992). Hydrogen metabolism in Clostridium acetobutylicum fermentation. Journal of Microbiology and Biotechnology, 2, 2771–2776.

    Google Scholar 

  • Kim, J. R., Min, B., & Logan, B. E. (2005). Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Applied Microbiology and Biotechnology, 68, 23–30.

    Article  CAS  Google Scholar 

  • Kim, B. H., Lim, S. S., Daud, W. R., Gadd, G. M., & Chang, I. S. (2015). The biocathode of microbial electrochemical systems and microbially-influenced corrosion. Bioresource Technology, 190, 395–401.

    Article  CAS  Google Scholar 

  • Kokabian, B., & Gude, V. G. (2013). Photosynthetic microbial desalination cells (PMDCs) for clean energy, water and biomass production. Environmental Science: Processes & Impacts, 15(12), 2178–2185.

    Google Scholar 

  • Kracke, F., Vassilev, I., & Krömer, L. O. (2015). Microbial electron transport and energy conservation – The foundation for optimizing bioelectrochemical systems. Frontiers in Microbiology, 6, 75.

    Article  Google Scholar 

  • Ksontini, H., Kachouri, F., & Hamdi, M. (2013). Impact of Lactococcus lactis spp. lactis bio adhesion on pathogenic bacillus cereus biofilm on silicone flowing system. Indian Journal of Microbiology, 53(3), 269–275.

    Article  CAS  Google Scholar 

  • Kurosu, M., & Begari, E. (2010). Vitamin K2 in electron transport system: Are enzymes involved in vitamin K2 biosynthesis promising drug targets? Molecules, 15, 1531–1553.

    Article  CAS  Google Scholar 

  • Larrosa-Guerrero, A., Scott, K., Katuri, K. P., Godinez, C., Head, I. M., & Curtis, T. (2010). Open circuit versus closed circuit enrichment of anodic biofilms in MFC: Effect on performance and anodic communities. Applied Microbiology and Biotechnology, 87, 1699–1713.

    Article  CAS  Google Scholar 

  • Li, C., Ding, L., Cui, H., Zhang, L., Xu, K., & Ren, H. (2012). Application of conductive polymers in biocathode of microbial fuel cells and microbial community. Bioresource Technology, 116, 459–465.

    Article  CAS  Google Scholar 

  • Liu, W. T., Marsh, T. L., Cheng, H., & Forney, L. J. (1997). Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and Environmental Microbiology, 63(11), 4516–4522.

    CAS  Google Scholar 

  • Logan, B. E. (2008). Microbial fuel cells. New York: John Wiley & Sons.

    Google Scholar 

  • Logan, B. E. (2009). Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews Microbiology, 7(5), 375–381.

    Article  CAS  Google Scholar 

  • Lovley, D. R. (2011). Powering microbes with electricity: Direct electron transfer from electrodes to microbes. Environmental Microbiology Reports, 3, 27–35.

    Article  CAS  Google Scholar 

  • Marshall, K. C., Stout, R., & Mitchell, R. (1971). Selective sorption of bacteria from seawater. Canadian Journal of Microbiology, 17(11), 1413–1416.

    Article  CAS  Google Scholar 

  • Marshall, C. W., Ross, D. E., Fichot, E. B., Norman, R. S., & May, H. D. (2012). Electrosynthesis of commodity chemicals by an autotrophic microbial community. Applied and Environmental Microbiology, 78, 8412–8420.

    Article  CAS  Google Scholar 

  • Marshall, C. W., Ross, D. E., Fichot, E. B., Norman, R. S., & May, H. D. (2013). Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes. Environment Science and Technology, 47, 6023–6029.

    Article  CAS  Google Scholar 

  • Marsili, E., Baron, D. B., Shikhare, I. D., Coursolle, D., Gralnick, J. A., & Bond, D. R. (2008). Shewanella secretes flavins that mediate extracellular electron transfer. Proceedings of the National Academy of Sciences U S A, 105, 3968–3973.

    Article  CAS  Google Scholar 

  • McCormick, A. J., Bombelli, P., Scott, A. M., Philips, A. J., Smith, A. G., Fisher, A. C., & Howe, C. J. (2011). Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system. Energy and Environment Science, 4, 4699–4709.

    Article  CAS  Google Scholar 

  • Meng, F., Jiang, J., Zhao, Q., Wang, K., Zhang, G., Fan, Q., Wei, L., Ding, J., & Zheng, Z. (2014). Bioelectrochemical desalination and electricity generation in microbial desalination cell with dewatered sludge as fuel. Bioresource Technology, 157, 120–126.

    Article  CAS  Google Scholar 

  • Mieke, C. A. A., Eerten-Jansen, V., Veldhoen, A. B., Plugge, C. M., Stams, A. J. M., Buisman, C. J. N., & Heijne, A. T. (2013). Microbial community analysis of a methane-producing biocathode in a bioelectrochemical system. Archaea. Article ID 481784.

    Google Scholar 

  • Moter, A., & Göbel, U. B. (2000). Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. Journal of Microbiological Methods, 41(2), 85–112.

    Article  CAS  Google Scholar 

  • Nettmann, E., Fröhling, A., Heeg, K., Klocke, M., Schlüter, O., & Mumme, J. (2013). Development of a flow-fluorescence in situ hybridization protocol for the analysis of microbial communities in anaerobic fermentation liquor. BMC Microbiology, 13(278), 1–15.

    Google Scholar 

  • Nevin, K. P., Kim, B. C., Glaven, R. H., Johnson, J. P., Woodward, T. L., Methé, B. A., et al. (2009). Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PloS One, 4(5).

    Google Scholar 

  • Nevin, K. P., Woodard, T. L., Franks, A. E., Summers, Z. M., & Lovley, D. R. (2010). Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio, 1, e00103–e00110.

    Article  CAS  Google Scholar 

  • Nguyen, V. K., Hong, S., Park, Y., Jo, K., & Lee, T. (2015). Autotrophic denitrification performance and bacterial community at biocathodes of bioelectrochemical systems with either abiotic or biotic anodes. Journal of Bioscience and Bioengineering, 119(2), 180–187.

    Article  CAS  Google Scholar 

  • Nivens, D. E., Palmer, R. J., Jr., & Whitez, D. C. (1995). Continuous nondestructive monitoring of microbial biofilms: A review of analytical techniques. Journal of Industrial Microbiology, 15, 263–276.

    Article  CAS  Google Scholar 

  • Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K., & Sekiya, T. (1989). Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proceedings of the National Academy of Sciences, 86(8), 2766–2770.

    Article  CAS  Google Scholar 

  • Park, D. H., & Zeikus, J. G. (1999). Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. Journal of Bacteriology, 181(8), 2403–2410.

    CAS  Google Scholar 

  • Park, D. H., Laivenieks, M., Guettler, M. V., Jain, M. K., & Zeikus, J. G. (1999). Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Applied and Environmental Microbiology, 65(7), 2912–2417.

    CAS  Google Scholar 

  • Patil, S. A., Harnisch, F., Koch, C., Hübschmann, T., Fetzer, I., Carmona-Martínez, A. A., Müller, S., & Schröder, U. (2011). Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: The role of pH on biofilm formation, performance and composition. Bioresource Technology, 102(20), 9683–9690.

    Article  CAS  Google Scholar 

  • Patil, S. A., Hägerhäll, C., & Gorton, L. (2012). Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems. Bioanalytical Reviews, 4, 159–192.

    Article  Google Scholar 

  • Pequin, S., Delorme, P., Goma, G., & Soucaille, P. (1994). Enhanced alcohol yields in batch cultures of Clostridium using a three-electrode potentiometric system with methyl viologen as electron carrier. Biotechnology Letters, 16, 269–274.

    Article  Google Scholar 

  • Pereira, A. S., Franco, R., Feio, M. J., Pinto, C., Lampreia, J., Reis, M. A., et al. (1996). Characterization of representative enzymes from a sulfate reducing bacterium implicated in the corrosion of steel. Biochemical and Biophysical Research Communications, 221, 414–421.

    Article  CAS  Google Scholar 

  • Pernthaler, A., Pernthaler, J., & Amann, R. (2002). Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Applied and Environmental Microbiology, 68(6), 3094–3101.

    Article  CAS  Google Scholar 

  • Pisciotta, J. M., Zaybak, Z., Call, D. F., Nam, J. Y., & Logan, B. E. (2012). Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes. Applied and Environmental Microbiology, 78, 5212–5219.

    Article  CAS  Google Scholar 

  • Pons, L., Délia, M. L., & Bergel, A. (2011). Effect of surface roughness, biofilm coverage and biofilm structure on the electrochemical efficiency of microbial cathodes. Bioresource Technology, 102(3), 2678–2683.

    Article  CAS  Google Scholar 

  • Pozo, G., Jourdin, L., Lu, Y., Ledezma, P., Kellera, J., & Freguia, S. (2015). Methanobacterium enables high rate electricity-driven autotrophic sulfate reduction. RSC Advance, 5, 89368–89374.

    Article  CAS  Google Scholar 

  • Prakash, O., Verma, M., Sharma, P., Kumar, M., Kumari, K., Singh, A., et al. (2007). Polyphasic approach of bacterial classification—An overview of recent advances. Indian Journal of Microbiology, 4(2), 98–108.

    Article  Google Scholar 

  • Rabaey, K., Read, S. T., Clauwaert, P., Freguia, S., Bond, P. L., Blackall, L. L., & Keller, J. (2008). Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells. ISME Journal, 2(5), 519–527.

    Article  CAS  Google Scholar 

  • Radajewski, S., Ineson, P., Parekh, N. R., & Murrell, J. C. (2000). Stable-isotope probing as a tool in microbial ecology. Nature, 403(6770), 646–649.

    Article  CAS  Google Scholar 

  • Reimers, C. E., Girguis, P., Stecher, H. A., III, Tender, L. M., Ryckelynck, N., & Whaling, P. (2006). Microbial fuel cell energy from an ocean cold seep. Geobiology, 4, 123–136.

    Article  CAS  Google Scholar 

  • Ren, Z., Lan, Y., & Wang, Y. (2013). Aligned carbon nanotubes physics, concepts, fabrication and devices. In P. Avouris, B. Bhushan, D. Bimberg, K. V. Klitzing, H. Sakaki, & R. Wiesendanger (Eds.), Nano science and technology (pp. 7–44). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Renslow, R., Donovan, C., Shim, M., Babauta, J., Nannapaneni, S., Schenk, J., & Beyenal, H. (2011). Oxygen reduction kinetics on graphite cathodes in sediment microbial fuel cells. Physical Chemistry Chemical Physics, 13, 21573–21584.

    Article  CAS  Google Scholar 

  • Rijnaarts, H. H. M., Norde, W., Bouwer, E. J., Lyklema, J., & Zehnder, A. J. B. (1995). Reversibility and mechanism of bacterial adhesion. Colloids and Surfaces B, 4(1), 5–22.

    Article  CAS  Google Scholar 

  • Rimboud, M., Desmond-Le Quemener, E., Erable, B., Bouchez, T., & Bergel, A. (2015). The current provided by oxygen-reducing microbial cathodes is related to the composition of their bacterial community. Bioelectrochemistry, 102, 42–49.

    Article  CAS  Google Scholar 

  • Rosenbaum, M., Aulenta, F., Villano, M., & Angenent, L. T. (2011). Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved? Bioresource Technology, 102(1), 324–333.

    Article  CAS  Google Scholar 

  • Ross, D. E., Flynn, J. M., Baron, D. B., Gralnick, J. A., & Bond, D. R. (2011). Towards electrosynthesis in Shewanella: Energetics of reversing the mtr pathway for reductive metabolism. PloS One, 6, e16649.

    Article  CAS  Google Scholar 

  • Rosselló-Mora, R., & Amann, R. (2001). The species concept for prokaryotes. FEMS Microbiology Reviews, 25(1), 39–67.

    Google Scholar 

  • Rozendal, R. A., Jeremiasse, A. W., Hamelers, H. V. M., & Buisman, C. J. N. (2008). Hydrogen production with a microbial biocathode. Environment Science and Technology, 42, 629–634.

    Article  CAS  Google Scholar 

  • Santoro, C., Guilizzoni, M., Correa Baena, J. P., Pasaogullari, U., Casalegno, A., Li, B., et al. (2014). The effects of carbon electrode surface properties on bacteria attachment and start up time of microbial fuel cells. Carbon, 67, 128–139.

    Article  CAS  Google Scholar 

  • Sasaki, K., Morita, M., Sasaki, D., Hirano, S., Matsumoto, N., Ohmura, N., & Igarashi, Y. (2011). Methanogenic communities on the electrodes of bioelectrochemical reactors without membranes. Journal of Bioscience and Bioengineering, 111, 47–49.

    Article  CAS  Google Scholar 

  • Schamphelaire, D. L., Boeckx, P., & Verstraete, W. (2010). Evaluation of biocathodes in freshwater and brackish sediment microbial fuel cells. Applied Microbiology and Biotechnology, 87(5), 1675–1687.

    Article  CAS  Google Scholar 

  • Semenec, L., & Franks, A. E. (2015). Delving through electrogenic biofilms: From anodes to cathodes to microbes. AIMS Bioengineering, 2(3), 222–248.

    Article  CAS  Google Scholar 

  • Sharkey, F. H., Banat, I. M., & Marchant, R. (2004). Detection and quantification of gene expression in environmental bacteriology. Applied and Environmental Microbiology, 70(7), 3795–3806.

    Article  CAS  Google Scholar 

  • Shi, L., Squier, T. C., Zachara, J. M., & Fredrickson, J. K. (2007). Respiration of metal (hydr)oxides by Shewanella and Geobacter: A key role for multihaem c-type cytochromes. Molecular Microbiology, 65, 12–20.

    Article  CAS  Google Scholar 

  • Shi, L., Richardson, D. J., Wang, Z., Kerisit, S. N., Rosso, K. M., Zachara, J. M., & Fredrickson, J. K. (2009). The roles of outer membrane cytochromes of Shewanella and Geobacter in extra cellular electron transfer. Environmental Microbiology Reports, 1, 220–227.

    Article  CAS  Google Scholar 

  • Steinbusch, K. J. J., Hamelers, H. V. M., Schaap, J. D., Kampman, C., & Buisman, C. J. N. (2010). Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environmental Science and Technology, 44(1), 513–517.

    Article  CAS  Google Scholar 

  • Strycharz, S. M., Glaven, R. H., Coppi, M. V., Gannon, S. M., Perpetua, L. A., Liu, A., et al. (2011). Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. Bioelectrochemistry, 80(2), 142–150.

    Article  CAS  Google Scholar 

  • Strycharz-Glaven, S. M., Glaven, R. H., Wang, Z., Zhou, J., Vora, G. J., & Tender, L. M. (2013). Electrochemical investigation of a microbial solar cell reveals a nonphotosynthetic biocathode catalyst. Applied and Environmental Microbiology, 79, 3933–3942.

    Article  CAS  Google Scholar 

  • Sun, Y., Wei, J., Liang, P., & Huang, X. (2012). Microbial community analysis in biocathode microbial fuel cells packed with different materials. AMB Express, 2(1), 21.

    Article  CAS  Google Scholar 

  • Surman, S. B., Walker, J. T., Goddard, D. T., Morton, L. H. G., Keevil, C. W., Weaver, W., et al. (1996). Comparison of microscope techniques for the examination of biofilms. Journal of Microbiological Methods, 25, 57–70.

    Article  Google Scholar 

  • Tartakovsky, B., Manuel, M.-F., Wang, H., & Guiot, S. R. (2009). High rate membraneless microbial electrolysis cell for continuous hydrogen production. International Journal of Hydrogen Energy, 34, 672–677.

    Article  CAS  Google Scholar 

  • Thauer, R. K., Jungermann, K., & Decker, K. (1977). Energy conservation in chemotrophic anaerobic bacteria. Bacteriological Reviews, 41(1), 100–180.

    CAS  Google Scholar 

  • Thrash, J. C., & Coates, J. D. (2008). Review: Direct and indirect electrical stimulation of microbial metabolism. Environment Science and Technology, 42, 3921–3931.

    Article  CAS  Google Scholar 

  • Tursun, H., Liu, R., Li, J., Abro, R., Wang, X., Gao, Y., & Li, Y. (2016). Carbon material optimized biocathode for improving microbial fuel cell performance. Frontiers in Microbiology, 7, 1–9.

    Article  Google Scholar 

  • Van Loosdrecht, M. C. M., Lyklema, J., Norde, W., & Zehnder, A. J. B. (1989). Bacterial adhesion: A physiochemical approach. Microbial Ecology, 17(1), 1–15.

    Article  Google Scholar 

  • Vandamme, P., Pot, B., Gillis, M., De Vos, P., Kersters, K., & Swings, J. (1996). Polyphasic taxonomy: A consensus approach to bacterial systematics. Microbiological Reviews, 60, 407–438.

    CAS  Google Scholar 

  • Vaneechoutte, M., Rossau, R., De Vos, P., Gillis, M., Janssens, D., Paepe, N., et al. (1992). Rapid identification of bacteria of the Comamonadaceae with amplified ribosomal DNA-restriction analysis (ARDRA). FEMS Microbiology Letters, 93(3), 227–233.

    Article  CAS  Google Scholar 

  • Vaneechoutte, M., De Beenhouwer, H., Claeys, G., Verschraegen, G. E. R. D. A., De Rouck, A., Paepe, N., et al. (1993). Identification of Mycobacterium species by using amplified ribosomal DNA restriction analysis. Journal of Clinical Microbiology, 31(8), 2061–2065.

    CAS  Google Scholar 

  • Virdis, B., Rabaey, K., Rozendal, R. A., Yuan, Z., & Keller, J. (2010). Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Research, 44, 2970–2980.

    Article  CAS  Google Scholar 

  • Wang, X., Feng, Y. J., Ren, N. Q., Wang, H. M., Lee, H., Li, N., & Zhao, Q. L. (2009). Accelerated start-up of two-chambered microbial fuel cells: Effect of anodic positive poised potential. Electrochimica Acta, 54, 1109–1114.

    Article  CAS  Google Scholar 

  • Wang, X., Feng, Y., Liu, J., Lee, H., Li, C., Li, N., & Ren, N. (2010). Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs). Biosensors and Bioelectronics, 25(12), 2639–2643.

    Google Scholar 

  • Wang, Z., Zheng, Y., Xiao, Y., Wu, S., Wu, Y., Yang, Z., & Zhao, F. (2013a). Analysis of oxygen reduction and microbial community of air-diffusion biocathode in microbial fuel cells. Bioresource Technology, 144, 74–79.

    Article  CAS  Google Scholar 

  • Wang, H., Jiang, S. C., Wang, Y., & Xiao, B. (2013b). Substrate removal and electricity generation in a membrane-less microbial fuel cell for biological treatment of wastewater. Bioresource Technology, 138, 109–116.

    Article  CAS  Google Scholar 

  • Wang, Z., Leary, D. H., Malanoski, A. P., Li, R. W., Hervey, W. J., Eddie, B. J., et al. (2015). A previously uncharacterized, nonphotosynthetic member of the Chromatiaceae is the primary CO2-fixing constituent in a self-regenerating biocathode. Applied and Environmental Microbiology, 81(2), 699–712.

    Article  CAS  Google Scholar 

  • Wei, J., Liang, P., & Huang, X. (2011a). Recent progress in electrodes for microbial fuel cells. Bioresource Technology, 102(20), 9335–9344.

    Article  CAS  Google Scholar 

  • Wei, J., Liang, P., Cao, X., & Huang, X. (2011b). Use of inexpensive semicoke and activated carbon as biocathode in microbial fuel cells. Bioresource Technology, 102(22), 10431–10435.

    Article  CAS  Google Scholar 

  • Wen, Q., Zhang, H., Chen, Z., Li, Y., Nan, J., & Feng, Y. (2012). Using bacterial catalyst in the cathode of microbial desalination cell to improve wastewater treatment and desalination. Bioresource Technology, 125, 108–113.

    Article  CAS  Google Scholar 

  • White, H., Lebertz, H., Thanos, I., & Simon, H. (1987). Clostridium thermoaceticum production of methanol from carbon monoxide in the presence of viologen dyes. FEMS Microbiology Letters, 43, 173–176.

    Article  CAS  Google Scholar 

  • White, H. K., Reimers, C. E., Cordes, E. E., Dilly, G. F., & Girguis, P. R. (2009). Quantitative population dynamics of microbial communities in plankton-fed microbial fuel cells. The ISME Journal, 3(6), 635–646.

    Article  Google Scholar 

  • Widjojoatmodjo, M. N., Fluit, A. C., & Verhoef, J. (1995). Molecular identification of bacteria by fluorescence-based PCR-single-strand conformation polymorphism analysis of the 16S rRNA gene. Journal of Clinical Microbiology, 33(10), 2601–2606.

    CAS  Google Scholar 

  • Wilmes, P., & Bond, P. L. (2006). Metaproteomics: Studying functional gene expression in microbial ecosystems. Trends in Microbiology, 14(2), 92–97.

    Article  CAS  Google Scholar 

  • Woese, C. R., Stackebrandt, E., Macke, T. J., & Fox, G. E. (1985). A phylogenetic definition of the major eubacterial taxa. Systematic and Applied Microbiology, 6(2), 143–151.

    Article  CAS  Google Scholar 

  • Wu, X. Y., Song, T. S., Zhu, X. J., Wei, P., & Zhou, C. C. (2013). Construction and operation of microbial fuel cell with Chlorella vulgaris biocathode for electricity generation. Applied Biochemistry and Biotechnology, 171(8), 2082–2092.

    Article  CAS  Google Scholar 

  • Xia, X., Sun, Y., Liang, P., & Huang, X. (2012). Long-term effect of set potential on biocathodes in microbial fuel cells: Electrochemical and phylogenetic characterization. Bioresource Technology, 120, 26–33.

    Article  CAS  Google Scholar 

  • Xiao, L., & He, Z. (2014). Applications and perspectives of phototrophic microorganisms for electricity generation from organic compounds in microbial fuel cells. Renewable and Sustainable Energy Reviews, 37, 550–559.

    Article  CAS  Google Scholar 

  • Xiao, L., Young, E. B., Grothjan, J. J., Lyon, S., Zhang, H., & He, Z. (2015). Wastewater treatment and microbial communities in an integrated photo-bioelectrochemical system affected by different wastewater algal inocula. Algal Research, 12, 446–454.

    Article  Google Scholar 

  • Xu, L., Zhao, Y., Doherty, L., Hu, Y., & Hao, X. (2016). Promoting the bio-cathode formation of a constructed wetland-microbial fuel cell by using powder activated carbon modified alum sludge in anode chamber. Scientific Reports, 6, 26514.

    Article  CAS  Google Scholar 

  • Yang, X., Beyenal, H., Harkin, G., & Lewandowski, Z. (2000). Quantifying biofilm structure using image analysis. Journal of Microbiological Methods, 39(2), 109–119.

    Article  CAS  Google Scholar 

  • Yang, L., Liu, Y., Wu, H., Høiby, N., Molin, S., & Song, Z.-J. (2011). Review: Current understanding of multi-species biofilms. International Journal of Oral Science, 3, 74–81.

    Article  Google Scholar 

  • You, S. J., Ren, N. Q., Zhao, Q. L., Wang, J. Y., & Yang, F. L. (2009). Power generation and electrochemical analysis of biocathode microbial fuel cell using graphite fibre brush as cathode material. Fuel Cells, 9(5), 588–596.

    Article  CAS  Google Scholar 

  • Yu, L., Duan, J., Zhao, W., Huang, Y., & Hou, B. (2008). Characteristics of hydrogen evolution and oxidation catalyzed by Desulfovibrio caledoniensis biofilm on pyrolytic graphite electrode. Electrochimica Acta, 54(1), 29–34.

    Google Scholar 

  • Zaybak, Z., Pisciotta, J. M., Tokash, J. C., & Logan, B. E. (2013). Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems. Journal of Biotechnology, 168, 478–485.

    Article  CAS  Google Scholar 

  • Zhang, G. D., Zhao, Q. L., Jiao, Y., Zhang, J. N., Jiang, J. Q., Ren, N., & Kim, B. H. (2011a). Improved performance of microbial fuel cell using combination biocathode of graphite fiber brush and graphite granules. Journal of Power Sources, 196(15), 6036–6041.

    Article  CAS  Google Scholar 

  • Zhang, L., Zhu, X., Li, J., Liao, Q., & Ye, D. D. (2011b). Biofilm formation and electricity generation of a microbial fuel cell started up under different external resistances. Journal of Power Sources, 196, 6029–6035.

    Article  CAS  Google Scholar 

  • Zhang, G., Zhao, Q., Jiao, Y., Wang, K., Lee, D. J., & Ren, N. (2012a). Biocathode microbial fuel cell for efficient electricity recovery from dairy manure. Biosensors and Bioelectronics, 31(1), 537–543.

    Article  CAS  Google Scholar 

  • Zhang, Y., Sun, J., Hu, Y., Li, S., & Xu, Q. (2012b). Bio-cathode materials evaluation in microbial fuel cells: A comparison of graphite felt, carbon paper and stainless steel mesh materials. International Journal of Hydrogen Energy, 37(22), 16935–16942.

    Article  CAS  Google Scholar 

  • Zhang, Y., Sun, J., Hu, Y., Li, S., & Xu, Q. (2013). Carbon nanotube-coated stainless steel mesh for enhanced oxygen reduction in biocathode microbial fuel cells. Journal of Power Sources, 239, 169–174.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Srimanta Ray was a visiting research associate in the Department of Civil and Environmental Engineering, University of Windsor, Ontario, Canada during preparation of this manuscript. Financial contribution for Dr. Ray’s associateship was provided by the Department of Biotechnology, Government of India. The Canadian Queen Elizabeth II Diamond Jubilee Scholarship program provided funding to support Mr. Vignesh Prakasam. Funding to support Ms. Fatemeh Bagh was provided by the Ontario Trillium foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Lalman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Capital Publishing Company, New Delhi, India

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prakasam, V., Bagh, S.G.F., Ray, S., Fifield, B., Porter, L.A., Lalman, J.A. (2018). Role of Biocathodes in Bioelectrochemical Systems. In: Das, D. (eds) Microbial Fuel Cell. Springer, Cham. https://doi.org/10.1007/978-3-319-66793-5_9

Download citation

Publish with us

Policies and ethics