Skip to main content

Anodic Electron Transfer Mechanism in Bioelectrochemical Systems

  • Chapter
  • First Online:
Microbial Fuel Cell

Abstract

The reality of bacteria in transporting electron beyond their cell wall and ability to electrically interact with electrode has been nearly over a century (Potter 1911). Microbial fuel cells are growing bioelectrochemical systems that use bacteria as a catalyst and generate bioelectricity using organic matter. The bacteria act as powerhouse at the anode of MFC and oxidize organic matter to CO2 by generating electrons and protons (Kondaveeti 2014). These electrons move from anode to cathode and get reduced as water by using oxygen as an electron acceptor. The generated electrons from bacteria can be transferred to anode by direct contact with biofilm or by using mediators, which can be either exogenic or endogenic (Kondaveeti and Min 2015). The natural mediators such as flavins which are secreted by bacteria or other active complexes such as c-type chromosomes present on outer cell membranes can shuttle electrons. Up to date the metal reducing bacterial species such as Geobacter and Shewanella have been widely noticed in MFC technology, due to their external electron transfer mechanism and for synthesis of natural mediators (riboflavins), which can be a rival for other exoelectrogens (Logan 2008). The external insoluble shuttles such as neutral red, and methyl viologen etc. were used in microbial fuel cells for electron transfer from the bacterial cell wall to electrodes. The initial studies in addition of exogenous mediators to MFC were pursued (Cohen 1931; Schroder 2007). In this study low current generation in MFC might be due to lack of electromotive oxidation and reductive force. These were resurfaced in 1980 by Bennetto and coworkers and it was further investigated by many other researchers. In the present chapter, the electron transfer mechanisms such as direct electron transfer, mediated electron transfer and interspecies electron transfer mechanisms with electroactive anode bacteria are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Biffinger, J. C., Pietron, J., Ray, R., Little, B., & Ringeisen, B. R. (2007). A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosensors & Bioelectronics, 22(8), 1672–1679.

    Article  CAS  Google Scholar 

  • Bond, D. R., & Lovley, D. R. (2003). Electricity production by geobacter sulfurreducens attached to electrodes. Applied and Environmental Microbiology, 69(3), 1548–1555.

    Article  CAS  Google Scholar 

  • Bond, D. R., & Lovley, D. R. (2005). Evidence for involvement of an electron shuttle in electricity generation by geothrix fermentans. Applied and Environmental Microbiology, 71(4), 2186–2189.

    Article  CAS  Google Scholar 

  • Chaudhuri, S. K., & Lovley, D. R. (2003). Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnology, 21(10), 1229–1232.

    Article  CAS  Google Scholar 

  • Cheng, Q., & Call, D. F. (2016). Hardwiring microbes via direct interspecies electron transfer: Mechanisms and applications. Environmental Science: Processes and Impacts, 18, 968–980.

    CAS  Google Scholar 

  • Cheng, S., Xing, D., Call, D. F., & Logan, B. E. (2009). Direct biological conversion of electrical current into methane by electromethanogenesis. Environmental Science & Technology, 43(10), 3953–3958.

    Article  CAS  Google Scholar 

  • Choi, Y., Kim, N., Kim, S., & Jung, S. (2003). Dynamic behaviors of redox mediators with in the hydrophobic layers as an important factor for effective microbial fuel cell operation. Bulletin of the Korean Chemical Society, 24(4), 437–440.

    Article  CAS  Google Scholar 

  • Choi, O., Um, Y., & Sang, B.-I. (2012). Butyrate production enhancement by Clostridium tyrobutyricum using electron mediators and a cathodic electron donor. Biotechnology and Bioengineering, 109(10), 2494–2502.

    Article  CAS  Google Scholar 

  • Clauwaert, P., & Verstraete, W. (2009). Methanogenesis in membraneless microbial electrolysis cells. Applied Microbiology and Biotechnology, 82(5), 829–836.

    Article  CAS  Google Scholar 

  • Clauwaert, P., van der Ha, D., Boon, N., Verbeken, K., Verhaege, M., Rabaey, K., & Verstraete, W. (2007). Open air biocathode enables effective electricity generation with microbial fuel cells. Environmental Science and Technology, 41(21), 7564–7569.

    Article  CAS  Google Scholar 

  • Cohen, B. (1931). The bacterial culture as an electrical half-cell. Journal of Bacteriology, 21, 18–19.

    CAS  Google Scholar 

  • Cologgi, D. L., Speers, A. M., Bullard, B. A., Kelly, S. D., & Reguera, G. (2014). Enhanced uranium immobilization and reduction by Geobacter sulfurreducens biofilms. Applied and Environmental Microbiology, 80(21), 6638–6646.

    Article  Google Scholar 

  • Dumas, C., Basseguy, R., & Bergel, A. (2008). DSA to grow electrochemically active biofilms of Geobacter sulfurreducens. Electrochimica Acta, 53(7), 3200–3209.

    Article  CAS  Google Scholar 

  • Fultz, M. L., & Durst, R. A. (1982). Mediator compounds for the electrochemical study of biological redox systems: A compilation. Analytica Chimica Acta, 140(1), 1–18.

    Article  CAS  Google Scholar 

  • Ganguli, R., & Dunn, B. S. (2009). Kinetics of anode reactions for a yeast-catalysed microbial fuel cell. Fuel Cells, 9(1), 44–52.

    Article  CAS  Google Scholar 

  • Guo, K., Donose, B. C., Soeriyadi, A. H., Prévoteau, A., Patil, S. A., Freguia, S., Gooding, J. J., & Rabaey, K. (2014). Flame oxidation of stainless steel felt enhances anodic biofilm formation and current output in bioelectrochemical systems. Environmental Science & Technology, 48(12), 7151–7156.

    Google Scholar 

  • Hubenova, Y., & Mitov, M. (2015). Extracellular electron transfer in yeast-based biofuel cells: A review. Bioelectrochemistry, 106(Part A), 177–185.

    Google Scholar 

  • Huang, L., Zeng, R. J., & Angelidaki, I. (2008). Electricity production from xylose using a mediator-less microbial fuel cell. Bioresource Technology, 99(10), 4178–4184.

    Article  CAS  Google Scholar 

  • Jang, J. K., Pham, T. H., Chang, I. S., Kang, K. H., Moon, H., Cho, K. S., & Kim, B. H. (2004). Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochemistry, 39(8), 1007–1012.

    Article  CAS  Google Scholar 

  • Kato, S., Hashimoto, K., & Watanabe, K. (2012). Microbial interspecies electron transfer via electric currents through conductive minerals. Proceedings of the National Academy of Sciences of the United States of America, 109(25), 10042–10046.

    Article  CAS  Google Scholar 

  • Kim, S. K., & Lee, C. G. (2015). Marine bioenergy: Trends and developments. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Kim, H. J., Park, H. S., Hyun, M. S., Chang, I. S., Kim, M., & Kim, B. H. (2002). A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme and Microbial Technology, 30(2), 145–152.

    Article  CAS  Google Scholar 

  • Kondaveeti, S., Lee, J., Kakarla, R., Kim, H. S., & Min, B. (2014). Low-cost separators for enhanced power production and field application of microbial fuel cells (MFCs). ElectrochimicaActa, 132(0), 434–440.

    Google Scholar 

  • Kondaveeti, S., & Min, B. (2015). Bioelectrochemical reduction of volatile fatty acids in anaerobic digestion effluent for the production of biofuels. Water Research, 87, 137–144.

    Article  CAS  Google Scholar 

  • Kumar, G. G., Sarathi, V. G. S., & Nahm, K. S. (2013). Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells. Biosensors and Bioelectronics Elsevier, 43, 461–475.

    Article  CAS  Google Scholar 

  • Lee, H. S., & Rittman, B. E. (2010). Significance of biological hydrogen oxidation in a continuous single-chamber microbial electrolysis cell. International Journal of Hydrogen Energy, 35, 920–927.

    Article  CAS  Google Scholar 

  • Lee, S. A., Choi, Y., Jung, S., & Kim, S. (2002). Effect of initial carbon sources on the electrochemical detection of glucose by Gluconobacter oxydans. Bioelectrochemistry, 57(2), 173–178.

    Article  CAS  Google Scholar 

  • Little, D. M., Agricultural, C. U., & Engineering, B. (2008). Investigation of a photosynthetically aerated cathode in a MFC. Clemson University.

    Google Scholar 

  • Logan, B. E. (2008). Microbial fuel cells. Hoboken: Wiley and Sons Inc.

    Google Scholar 

  • Logan, B. E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science & Technology, 40(17), 5181–5192.

    Article  CAS  Google Scholar 

  • Malvankar, N. S., & Lovley, D. R. (2012). Microbial nanowires: A new paradigm for biological electron transfer and bioelectronics. ChemSusChem, 5(6), 1039–1046.

    Article  CAS  Google Scholar 

  • Marcus, A. K., Torres, C. I., & Rittmann, B. E. (2007). Conduction-based modeling of the biofilm anode of a microbial fuel cell. Biotechnology and Bioengineering, 98(6), 1171–1182.

    Article  CAS  Google Scholar 

  • Mohan, Y., Manoj Muthu Kumar, S., & Das, D. (2008). Electricity generation using microbial fuel cells. International Journal of Hydrogen Energy, 33(1), 423–426.

    Article  CAS  Google Scholar 

  • Newman, D. K., & Kolter, R. (2000). A role for excreted quinones in extracellular electron transfer. Nature, 405(6782), 94–97.

    Article  CAS  Google Scholar 

  • Nielsen, L. P., Risgaard-Petersen, N., Fossing, H., Christensen, P. B., & Sayama, M. (2010). Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature, 463(7284), 1071–1074.

    Article  CAS  Google Scholar 

  • Park, D. H., & Zeikus, J. G. (2000). Electricity generation in microbial fuel cells using neutral red as an electronophore. Applied and Environmental Microbiology, 66(4), 1292–1297.

    Article  CAS  Google Scholar 

  • Pham, T. H., Boon, N., Aelterman, P., Clauwaert, P., De Schamphelaire, L., Vanhaecke, L., De Maeyer, K., Hofte, M., Verstraete, W., & Rabaey, K. (2008). Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. Applied Microbiology and Biotechnology, 77, 1119–1129.

    Article  CAS  Google Scholar 

  • Potter, M. C. (1911). Electrical effects accompanying the decomposition of organic compounds. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 84(571), 260–276.

    Article  Google Scholar 

  • Rabaey, K., Boon, N., Höfte, M., & Verstraete, W. (2005). Microbial phenazine production enhances electron transfer in biofuel cells. Environmental Science and Technology, 39(9), 3401–3408.

    Article  CAS  Google Scholar 

  • Rahimnejad, M., Najafpour, G. D., Ghoreyshi, A. A., Shakeri, M., & Zare, H. (2011). Methylene blue as electron promoters in microbial fuel cell. International Journal of Hydrogen Energy, 36(20), 13335–13341.

    Article  CAS  Google Scholar 

  • Reguera, G., Nevin, K. P., Nicoll, J. S., Covalla, S. F., Woodard, T. L., & Lovley, D. R. (2006). Biofilm and nanowire production leads to increased current in geobacter sulfurreducens fuel cells. Applied and Environmental Microbiology, 72(11), 7345–7348.

    Article  CAS  Google Scholar 

  • Richter, L. V., Sandler, S. J., & Weis, R. M. (2012). Two isoforms of geobacter sulfurreducens pila have distinct roles in pilus biogenesis, cytochrome localization, extracellular electron transfer, and biofilm formation. Journal of Bacteriology, 194(10), 2551–2563.

    Article  CAS  Google Scholar 

  • Ringeisen, B. R., Henderson, E., Wu, P. K., Pietron, J., Ray, R., Little, B., Biffinger, J. C., & Jones-Meehan, J. M. (2006). High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environmental Science and Technology, 40(8), 2629–2634.

    Article  CAS  Google Scholar 

  • Rosenbaum, M., Zhao, F., Quaas, M., Wulff, H., Schroder, U., & Scholz, F. (2007). Evaluation of catalytic properties of tungsten carbide for the anode of microbial fuel cells. Applied Catalysis B: Environmental, 74, 261–269.

    Article  CAS  Google Scholar 

  • Ross, D. E., Flynn, J. M., Baron, D. B., Gralnick, J. A., & Bond, D. R. (2011). Towards electrosynthesis in shewanella: Energetics of reversing the Mtr pathway for reductive metabolism. PloS One, 6(2), e16649.

    Article  CAS  Google Scholar 

  • Rotaru, A.-E., Shrestha, P. M., Liu, F., Ueki, T., Nevin, K., Summers, Z. M., & Lovley, D. R. (2012). Interspecies Electron transfer via hydrogen and formate rather than direct electrical connections in cocultures of pelobacter carbinolicus and geobacter sulfurreducens. Applied and Environmental Microbiology, 78(21), 7645–7651.

    Article  CAS  Google Scholar 

  • Schroder, U. (2007). Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Physical Chemistry Chemical Physics, 9(21), 2619–2629.

    Article  Google Scholar 

  • Seelam, J. S., Pant, D., Patil, S. A., & Kapadnis, B. P. (2015). Biological electricity production from wastes and wastewaters. In Microbial factories (pp. 155–183). New Delhi: Springer India.

    Chapter  Google Scholar 

  • Sharma, T., Reddy, L. M. A., Chandra, T. S., & Ramaprabhu, S. (2008). Development of carbon nanotubes and nanofluids based microbial fuel cell. International Journal of Hydrogen Energy, 33, 6749–6754.

    Article  CAS  Google Scholar 

  • Song, H.-L., Zhu, Y., & Li, J. (2016). Electron transfer mechanisms, characteristics and applications of biological cathode microbial fuel cells – A mini review. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2015.01.008.

  • Srikanth, S., Pavani, T., Sarma, P. N., & Venkata Mohan, S. (2011). Synergistic interaction of biocatalyst with bio-anode as a function of electrode materials. International Journal of Hydrogen Energy, 36, 2271–2280.

    Article  CAS  Google Scholar 

  • Thygesen, A., Poulsen, F. W., Min, B., Angelidaki, I., & Thomsen, A. B. (2009). The effect of different substrates and humic acid on power generation in microbial fuel cell operation. Bioresource Technology, 100(3), 1186–1191.

    Article  CAS  Google Scholar 

  • Torres, A. K., Marcus, H. S., Lee, P., Parameswaran, R. K.-B., & Rittmann, B. E. (2010). A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiology Reviews, 34, 3–17.

    Article  CAS  Google Scholar 

  • Veer Raghavulu, S., Suresh Babu, P., Kannaiah Goud, R., Venkata Subhash, G., Srikanth, S., & Venkata Mohan, S. (2012). Bioaugmentation of an electrochemically active strain to enhance the electron discharge of mixed culture: Process evaluation through electro-kinetic analysis. RSC Advances, 2, 677–688.

    Article  Google Scholar 

  • Vega, C. A., & Fernández, I. (1987). Mediating effect of ferric chelate compounds in microbial fuel cells with Lactobacillus plantarum, Streptococcus lactis, and Erwinia dissolvens. Bioelectrochemistry and Bioenergetics, 17(2), 217–222.

    Article  CAS  Google Scholar 

  • Wei, J., Liang, P., & Huang, X. (2011). Recent progress in electrodes for microbial fuel cells. Bioresource Technology, 102(20), 9335–9344.

    Article  CAS  Google Scholar 

  • Wei, L., Han, H., & Shen, J. (2012). Effects of cathodic electron acceptors and potassium ferricyanide concentrations on the performance of microbial fuel cell. International Journal of Hydrogen Energy, 37(17), 12980–12986.

    Article  CAS  Google Scholar 

  • Zhao, Z., Zhang, Y., Wang, L., & Quan, X. (2015). Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion. Scientific Reports, 5, 11094.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Mohanakrishna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Capital Publishing Company, New Delhi, India

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kondaveeti, S.K., Seelam, J.S., Mohanakrishna, G. (2018). Anodic Electron Transfer Mechanism in Bioelectrochemical Systems. In: Das, D. (eds) Microbial Fuel Cell. Springer, Cham. https://doi.org/10.1007/978-3-319-66793-5_5

Download citation

Publish with us

Policies and ethics