Skip to main content

Intestinal Incretins and the Regulation of Bone Physiology

  • Chapter
  • First Online:
Understanding the Gut-Bone Signaling Axis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1033))

Abstract

Although originally identified as modulators of nutrient absorption, the gut hormones gastric inhibitory polypeptide (GIP), glucagon-like peptide-1 (GLP-1), and glucagon-like peptide-2 (GLP-2) have also been found to play an important role in the regulation of bone turnover. These “incretin” hormones promote bone anabolism by stimulating osteoblast differentiation as well as increasing osteoblast longevity. In addition, GIP and perhaps GLP-2 attenuate the activity of osteoclastic cells, leading to a net increase in bone deposition and ultimately increasing bone mass. Studies have demonstrated that these hormones are important for bone mineralization and overall bone quality and function evolutionarily as important nutritional links signaling nutrient availability for skeletal anabolic functions. Accordingly, these entero-osseous hormones (EOH) have therapeutic potential for the management of osteoporosis. Although this chapter primarily focuses on skeletal effects of these incretin hormones, the GIP, GLP-1, and GLP-2 receptors are actually widely expressed throughout the body. Therefore, we will also briefly discuss these extraosseous receptors/effects and how they may indirectly impact the skeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DPP-IV:

Dipeptidyl peptidase-IV

EEH:

Enteroendocrine hormones

EOH:

Entero-osseous hormones

GIP:

Gastric inhibitory polypeptide/glucose-dependent insulinotropic polypeptide

GLP-1:

Glucagon-like peptide-1

GLP-2:

Glucagon-like peptide-2

PC:

Prohormone convertase

RA:

Receptor agonist

SCFA:

Short-chain fatty acids

References

  1. Warensjo E, Byberg L, Melhus H, Gedeborg R, Mallmin H, Wolk A, et al. Dietary calcium intake and risk of fracture and osteoporosis: prospective longitudinal cohort study. BMJ. 2011;342:d1473.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bollag RJ, Zhong Q, Ding KH, Phillips P, Zhong L, Qin F, et al. Glucose-dependent insulinotropic peptide is an integrative hormone with osteotropic effects. Mol Cell Endocrinol. 2001;177(1–2):35–41.

    Article  CAS  PubMed  Google Scholar 

  3. Bjarnason NH, Henriksen EE, Alexandersen P, Christgau S, Henriksen DB, Christiansen C. Mechanism of circadian variation in bone resorption. Bone. 2002;30(1):307–13.

    Article  CAS  PubMed  Google Scholar 

  4. Blumsohn A, Herrington K, Hannon RA, Shao P, Eyre DR, Eastell R. The effect of calcium supplementation on the circadian rhythm of bone resorption. J Clin Endocrinol Metab. 1994;79(3):730–5.

    CAS  PubMed  Google Scholar 

  5. Wolffbrandt KH, Damm Jorgensen K, Moody AJ, Pedersen PC. The effects of porcine GIP on insulin secretion and glucose clearance in the pig. Horm Metab Res Hormon Stoffwechselforschung = Horm Metab. 1986;18(3):159–62.

    Article  CAS  Google Scholar 

  6. Kieffer TJ. Gastro-intestinal hormones GIP and GLP-1. Ann Endocrinol. 2004;65(1):13–21.

    Article  CAS  Google Scholar 

  7. Kieffer TJ, Francis HJ. The glucagon-like peptides. Endocr Rev. 1999;20(6):876–913.

    Article  CAS  PubMed  Google Scholar 

  8. Heinrich G, Gros P, Lund PK, Bentley RC, Habener JF. Pre-proglucagon messenger ribonucleic acid: nucleotide and encoded amino acid sequences of the rat pancreatic complementary deoxyribonucleic acid. Endocrinology. 1984;115(6):2176–81.

    Article  CAS  PubMed  Google Scholar 

  9. Bell GI, Sanchez-Pescador R, Laybourn PJ, Najarian RC. Exon duplication and divergence in the human preproglucagon gene. Nature. 1983;304(5924):368–71.

    Article  CAS  PubMed  Google Scholar 

  10. Mojsov S, Heinrich G, Wilson IB, Ravazzola M, Orci L, Habener JF. Preproglucagon gene expression in pancreas and intestine diversifies at the level of post-translational processing. J Biol Chem. 1986;261(25):11880–9.

    CAS  PubMed  Google Scholar 

  11. Lee YC, Brubaker PL, Drucker DJ. Developmental and tissue-specific regulation of proglucagon gene expression. Endocrinology. 1990;127(5):2217–22.

    Article  CAS  PubMed  Google Scholar 

  12. Steiner DF. The proprotein convertases. Curr Opin Chem Biol. 1998;2(1):31–9.

    Article  CAS  PubMed  Google Scholar 

  13. Rouille Y, Martin S, Steiner DF. Differential processing of proglucagon by the subtilisin-like prohormone convertases PC2 and PC3 to generate either glucagon or glucagon-like peptide. J Biol Chem. 1995;270(44):26488–96.

    Article  CAS  PubMed  Google Scholar 

  14. Ugleholdt R. Glucose-dependent Insulinotropic Polypeptide (GIP): from prohormone to actions in endocrine pancreas and adipose tissue. Dan Med Bull. 2011;58(12):B4368.

    PubMed  Google Scholar 

  15. Henriksen DB, Alexandersen P, Bjarnason NH, Vilsboll T, Hartmann B, Henriksen EE, et al. Role of gastrointestinal hormones in postprandial reduction of bone resorption. J Bone Mineral Res: Off J Am Soc Bone Mineral Res. 2003;18(12):2180–9.

    Article  CAS  Google Scholar 

  16. Hartmann B, Johnsen AH, Orskov C, Adelhorst K, Thim L, Holst JJ. Structure, measurement, and secretion of human glucagon-like peptide-2. Peptides. 2000;21(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  17. Pais R, Gribble FM, Reimann F. Stimulation of incretin secreting cells. Ther Adv Endocrinol Metab. 2016;7(1):24–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brighton CA, Rievaj J, Kuhre RE, Glass LL, Schoonjans K, Holst JJ, et al. Bile acids trigger GLP-1 release predominantly by accessing basolaterally located G protein-coupled bile acid receptors. Endocrinology. 2015;156(11):3961–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Freeland KR, Wilson C, Wolever TM. Adaptation of colonic fermentation and glucagon-like peptide-1 secretion with increased wheat fibre intake for 1 year in hyperinsulinaemic human subjects. Br J Nutr. 2010;103(1):82–90.

    Article  CAS  PubMed  Google Scholar 

  20. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61(2):364–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Deacon CF. What do we know about the secretion and degradation of incretin hormones? Regul Pept. 2005;128(2):117–24.

    Article  CAS  PubMed  Google Scholar 

  22. Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest. 1993;91(1):301–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moss CE, Marsh WJ, Parker HE, Ogunnowo-Bada E, Riches CH, Habib AM, et al. Somatostatin receptor 5 and cannabinoid receptor 1 activation inhibit secretion of glucose-dependent insulinotropic polypeptide from intestinal K cells in rodents. Diabetologia. 2012;55(11):3094–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hansen L, Hartmann B, Bisgaard T, Mineo H, Jorgensen PN, Holst JJ. Somatostatin restrains the secretion of glucagon-like peptide-1 and -2 from isolated perfused porcine ileum. Am J Physiol Endocrinol Metab. 2000;278(6):E1010–8.

    CAS  PubMed  Google Scholar 

  25. Salera M, Pironi L, Giacomoni P, Venturi S, Capelli M, Miglioli M, et al. Effect of somatostatin on fasting and glucose-stimulated gastric inhibitory polypeptide release in man. Digestion. 1982;24(2):126–32.

    Article  CAS  PubMed  Google Scholar 

  26. Adriaenssens A, Lam BY, Billing L, Skeffington K, Sewing S, Reimann F, et al. A transcriptome-led exploration of molecular mechanisms regulating somatostatin-producing D-cells in the gastric epithelium. Endocrinology. 2015;156(11):3924–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lu M, Wheeler MB, Leng XH, Boyd AE 3rd. The role of the free cytosolic calcium level in beta-cell signal transduction by gastric inhibitory polypeptide and glucagon-like peptide I(7-37). Endocrinology. 1993;132(1):94–100.

    Google Scholar 

  28. Wheeler MB, Lu M, Dillon JS, Leng XH, Chen C, Boyd AE 3rd. Functional expression of the rat glucagon-like peptide-I receptor, evidence for coupling to both adenylyl cyclase and phospholipase-C. Endocrinology. 1993;133(1):57–62.

    Google Scholar 

  29. Fridolf T, Ahren B. GLP-1(7–36) amide stimulates insulin secretion in rat islets: studies on the mode of action. Diabetes Res. 1991;16(4):185–91.

    CAS  PubMed  Google Scholar 

  30. Zhang L, Wang Y, Wang J, Liu Y, Yin Y. Protein kinase C pathway mediates the protective effects of glucagon-like peptide-1 on the apoptosis of islet beta-cells. Mol Med Rep. 2015;12(5):7589–94.

    Article  CAS  PubMed  Google Scholar 

  31. Yusta B, Huang L, Munroe D, Wolff G, Fantaske R, Sharma S, et al. Enteroendocrine localization of GLP-2 receptor expression in humans and rodents. Gastroenterology. 2000;119(3):744–55.

    Article  CAS  PubMed  Google Scholar 

  32. Yusta B, Somwar R, Wang F, Munroe D, Grinstein S, Klip A, et al. Identification of glucagon-like peptide-2 (GLP-2)-activated signaling pathways in baby hamster kidney fibroblasts expressing the rat GLP-2 receptor. J Biol Chem. 1999;274(43):30459–67.

    Article  CAS  PubMed  Google Scholar 

  33. Pacheco-Pantoja EL, Ranganath LR, Gallagher JA, Wilson PJ, Fraser WD. Receptors and effects of gut hormones in three osteoblastic cell lines. BMC Physiol. 2011;11:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bollag RJ, Zhong Q, Phillips P, Min L, Zhong L, Cameron R, et al. Osteoblast-derived cells express functional glucose-dependent insulinotropic peptide receptors. Endocrinology. 2000;141(3):1228–35.

    Article  CAS  PubMed  Google Scholar 

  35. Usdin TB, Mezey E, Button DC, Brownstein MJ, Bonner TI. Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal peptide receptor family, is widely distributed in peripheral organs and the brain. Endocrinology. 1993;133(6):2861–70.

    Article  CAS  PubMed  Google Scholar 

  36. Zhong Q, Itokawa T, Sridhar S, Ding KH, Xie D, Kang B, et al. Effects of glucose-dependent insulinotropic peptide on osteoclast function. Am J Physiol Endocrinol Metab. 2007;292(2):E543–8.

    Article  CAS  PubMed  Google Scholar 

  37. Ehses JA, Pelech SL, Pederson RA, McIntosh CH. Glucose-dependent insulinotropic polypeptide activates the Raf-Mek1/2-ERK1/2 module via a cyclic AMP/cAMP-dependent protein kinase/Rap1-mediated pathway. J Biol Chem. 2002;277(40):37088–97.

    Article  CAS  PubMed  Google Scholar 

  38. Zhong Q, Bollag RJ, Dransfield DT, Gasalla-Herraiz J, Ding KH, Min L, et al. Glucose-dependent insulinotropic peptide signaling pathways in endothelial cells. Peptides. 2000;21(9):1427–32.

    Article  CAS  PubMed  Google Scholar 

  39. Pujadas G, Drucker DJ. Vascular biology of glucagon receptor superfamily peptides: mechanistic and clinical relevance. Endocr Rev. 2016;37(6):554–83.

    Article  PubMed  Google Scholar 

  40. Deacon CF. Circulation and degradation of GIP and GLP-1. Horm Metab Res Horm Stoffwechselforschung Horm Metab. 2004;36(11–12):761–5.

    Article  CAS  Google Scholar 

  41. Kieffer TJ, McIntosh CH, Pederson RA. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology. 1995;136(8):3585–96.

    Article  CAS  PubMed  Google Scholar 

  42. Brubaker PL, Drucker DJ. Structure-function of the glucagon receptor family of G protein-coupled receptors: the glucagon, GIP, GLP-1, and GLP-2 receptors. Recept Channels. 2002;8(3–4):179–88.

    Article  CAS  PubMed  Google Scholar 

  43. Lambeir AM, Proost P, Scharpe S, De Meester I. A kinetic study of glucagon-like peptide-1 and glucagon-like peptide-2 truncation by dipeptidyl peptidase IV, in vitro. Biochem Pharmacol. 2002;64(12):1753–6.

    Article  CAS  PubMed  Google Scholar 

  44. Hartmann B, Harr MB, Jeppesen PB, Wojdemann M, Deacon CF, Mortensen PB, et al. In vivo and in vitro degradation of glucagon-like peptide-2 in humans. J Clin Endocrinol Metab. 2000;85(8):2884–8.

    CAS  PubMed  Google Scholar 

  45. Deacon CF, Nauck MA, Toft-Nielsen M, Pridal L, Willms B, Holst JJ. Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes. 1995;44(9):1126–31.

    Article  CAS  PubMed  Google Scholar 

  46. Brubaker PL, Crivici A, Izzo A, Ehrlich P, Tsai CH, Drucker DJ. Circulating and tissue forms of the intestinal growth factor, glucagon-like peptide-2. Endocrinology. 1997;138(11):4837–43.

    Article  CAS  PubMed  Google Scholar 

  47. Nuche-Berenguer B, Portal-Nunez S, Moreno P, Gonzalez N, Acitores A, Lopez-Herradon A, et al. Presence of a functional receptor for GLP-1 in osteoblastic cells, independent of the cAMP-linked GLP-1 receptor. J Cell Physiol. 2010;225(2):585–92.

    Article  CAS  PubMed  Google Scholar 

  48. Askov-Hansen C, Jeppesen PB, Lund P, Hartmann B, Holst JJ, Henriksen DB. Effect of glucagon-like peptide-2 exposure on bone resorption: effectiveness of high concentration versus prolonged exposure. Regul Pept. 2013;181:4–8.

    Article  CAS  PubMed  Google Scholar 

  49. Yavropoulou MP, Yovos JG. Incretins and bone: evolving concepts in nutrient-dependent regulation of bone turnover. Hormones. 2013;12(2):214–23.

    Article  PubMed  Google Scholar 

  50. Mieczkowska A, Bouvard B, Chappard D, Mabilleau G. Glucose-dependent insulinotropic polypeptide (GIP) directly affects collagen fibril diameter and collagen cross-linking in osteoblast cultures. Bone. 2015;74:29–36.

    Article  CAS  PubMed  Google Scholar 

  51. Berlier JL, Kharroubi I, Zhang J, Dalla Valle A, Rigutto S, Mathieu M, et al. Glucose-dependent insulinotropic peptide prevents serum deprivation-induced apoptosis in human bone marrow-derived mesenchymal stem cells and osteoblastic cells. Stem Cell Rev. 2015;11(6):841–51.

    Article  CAS  PubMed  Google Scholar 

  52. Xie D, Cheng H, Hamrick M, Zhong Q, Ding KH, Correa D, et al. Glucose-dependent insulinotropic polypeptide receptor knockout mice have altered bone turnover. Bone. 2005;37(6):759–69.

    Article  CAS  PubMed  Google Scholar 

  53. Tsukiyama K, Yamada Y, Yamada C, Harada N, Kawasaki Y, Ogura M, et al. Gastric inhibitory polypeptide as an endogenous factor promoting new bone formation after food ingestion. Mol Endocrinol. 2006;20(7):1644–51.

    Article  CAS  PubMed  Google Scholar 

  54. Mieczkowska A, Irwin N, Flatt PR, Chappard D, Mabilleau G. Glucose-dependent insulinotropic polypeptide (GIP) receptor deletion leads to reduced bone strength and quality. Bone. 2013;56(2):337–42.

    Article  CAS  PubMed  Google Scholar 

  55. Gaudin-Audrain C, Irwin N, Mansur S, Flatt PR, Thorens B, Basle M, et al. Glucose-dependent insulinotropic polypeptide receptor deficiency leads to modifications of trabecular bone volume and quality in mice. Bone. 2013;53(1):221–30.

    Article  CAS  PubMed  Google Scholar 

  56. Mieczkowska A, Mansur S, Bouvard B, Flatt PR, Thorens B, Irwin N, et al. Double incretin receptor knock-out (DIRKO) mice present with alterations of trabecular and cortical micromorphology and bone strength. Osteoporos Int: J Established Result Cooperation Eur Found Osteoporos Natl Osteoporos Found USA. 2015;26(1):209–18.

    Article  CAS  Google Scholar 

  57. Clowes JA, Hannon RA, Yap TS, Hoyle NR, Blumsohn A, Eastell R. Effect of feeding on bone turnover markers and its impact on biological variability of measurements. Bone. 2002;30(6):886–90.

    Article  CAS  PubMed  Google Scholar 

  58. Clowes JA, Allen HC, Prentis DM, Eastell R, Blumsohn A. Octreotide abolishes the acute decrease in bone turnover in response to oral glucose. J Clin Endocrinol Metab. 2003;88(10):4867–73.

    Article  CAS  PubMed  Google Scholar 

  59. Clowes JA, Robinson RT, Heller SR, Eastell R, Blumsohn A. Acute changes of bone turnover and PTH induced by insulin and glucose: euglycemic and hypoglycemic hyperinsulinemic clamp studies. J Clin Endocrinol Metab. 2002;87(7):3324–9.

    Article  CAS  PubMed  Google Scholar 

  60. Nissen A, Christensen M, Knop FK, Vilsboll T, Holst JJ, Hartmann B. Glucose-dependent insulinotropic polypeptide inhibits bone resorption in humans. J Clin Endocrinol Metab. 2014;99(11):E2325–9.

    Article  CAS  PubMed  Google Scholar 

  61. Torekov SS, Harslof T, Rejnmark L, Eiken P, Jensen JB, Herman AP, et al. A functional amino acid substitution in the glucose-dependent insulinotropic polypeptide receptor (GIPR) gene is associated with lower bone mineral density and increased fracture risk. J Clin Endocrinol Metab. 2014;99(4):E729–33.

    Article  CAS  PubMed  Google Scholar 

  62. Meier C, Schwartz AV, Egger A, Lecka-Czernik B. Effects of diabetes drugs on the skeleton. Bone. 2016;82:93–100.

    Article  CAS  PubMed  Google Scholar 

  63. Glorie L, Behets GJ, Baerts L, De Meester I, D'Haese PC, Verhulst A. DPP IV inhibitor treatment attenuates bone loss and improves mechanical bone strength in male diabetic rats. Am J Physiol Endocrinol Metab. 2014;307(5):E447–55.

    Article  CAS  PubMed  Google Scholar 

  64. Gallagher EJ, Sun H, Kornhauser C, Tobin-Hess A, Epstein S, Yakar S, et al. The effect of dipeptidyl peptidase-IV inhibition on bone in a mouse model of type 2 diabetes. Diabetes Metab Res Rev. 2014;30(3):191–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Eom YS, Gwon AR, Kwak KM, Kim JY, Yu SH, Lee S, et al. Protective effects of vildagliptin against pioglitazone-induced bone loss in type 2 diabetic rats. PLoS One. 2016;11(12):e0168569.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bunck MC, Poelma M, Eekhoff EM, Schweizer A, Heine RJ, Nijpels G, et al. Effects of vildagliptin on postprandial markers of bone resorption and calcium homeostasis in recently diagnosed, well-controlled type 2 diabetes patients. J Diabetes. 2012;4(2):181–5.

    Article  CAS  PubMed  Google Scholar 

  67. Driessen JH, de Vries F, van Onzenoort H, et al. The use of incretins and fractures - a meta-analysis on population-based real life data. Br J Clin Pharmacol. 2017;83(4):923–6.

    Google Scholar 

  68. Driessen JH, van den Bergh JP, van Onzenoort HA, Henry RM, Leufkens HG, de Vries F. Long-term use of dipeptidyl peptidase-4 inhibitors and risk of fracture: A retrospective population-based cohort study. Diabetes Obes Metab. 2017;19(3):421–8.

    Google Scholar 

  69. Mabilleau G, Mieczkowska A, Irwin N, Simon Y, Audran M, Flatt PR, et al. Beneficial effects of a N-terminally modified GIP agonist on tissue-level bone material properties. Bone. 2014;63:61–8.

    Article  CAS  PubMed  Google Scholar 

  70. Mansur SA, Mieczkowska A, Bouvard B, Flatt PR, Chappard D, Irwin N, et al. Stable incretin mimetics counter rapid deterioration of bone quality in type 1 diabetes mellitus. J Cell Physiol. 2015;230(12):3009–18.

    Article  CAS  PubMed  Google Scholar 

  71. Mansur SA, Mieczkowska A, Flatt PR, Bouvard B, Chappard D, Irwin N, et al. A new stable GIP-Oxyntomodulin hybrid peptide improved bone strength both at the organ and tissue levels in genetically-inherited type 2 diabetes mellitus. Bone. 2016;87:102–13.

    Article  CAS  PubMed  Google Scholar 

  72. Ding KH, Shi XM, Zhong Q, Kang B, Xie D, Bollag WB, et al. Impact of glucose-dependent insulinotropic peptide on age-induced bone loss. J Bone Mineral Res:Off J Am Soc Bone Mineral Res. 2008;23(4):536–43.

    Article  CAS  Google Scholar 

  73. Yamada C, Yamada Y, Tsukiyama K, Yamada K, Udagawa N, Takahashi N, et al. The murine glucagon-like peptide-1 receptor is essential for control of bone resorption. Endocrinology. 2008;149(2):574–9.

    Article  CAS  PubMed  Google Scholar 

  74. Mabilleau G, Mieczkowska A, Irwin N, Flatt PR, Chappard D. Optimal bone mechanical and material properties require a functional glucagon-like peptide-1 receptor. J Endocrinol. 2013;219(1):59–68.

    Article  CAS  PubMed  Google Scholar 

  75. Sun HX, Lu N, Luo X, Zhao L, Liu JM. Liraglutide, the glucagon-like peptide-1 receptor agonist, has anabolic bone effects in diabetic Goto-Kakizaki rats. J Diabetes. 2015;7(4):584–8.

    Article  CAS  PubMed  Google Scholar 

  76. Irwin N, Flatt PR. New perspectives on exploitation of incretin peptides for the treatment of diabetes and related disorders. World J Diabetes. 2015;6(15):1285–95.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Mabilleau G, Mieczkowska A, Chappard D. Use of glucagon-like peptide-1 receptor agonists and bone fractures: a meta-analysis of randomized clinical trials. J Diabetes. 2014;6(3):260–6.

    Article  CAS  PubMed  Google Scholar 

  78. Su B, Sheng H, Zhang M, Bu L, Yang P, Li L, et al. Risk of bone fractures associated with glucagon-like peptide-1 receptor agonists’ treatment: a meta-analysis of randomized controlled trials. Endocrine. 2015;48(1):107–15.

    Article  CAS  PubMed  Google Scholar 

  79. Henriksen DB, Alexandersen P, Byrjalsen I, Hartmann B, Bone HG, Christiansen C, et al. Reduction of nocturnal rise in bone resorption by subcutaneous GLP-2. Bone. 2004;34(1):140–7.

    Article  CAS  PubMed  Google Scholar 

  80. Henriksen DB, Alexandersen P, Hartmann B, Adrian CL, Byrjalsen I, Bone HG, et al. Disassociation of bone resorption and formation by GLP-2: a 14-day study in healthy postmenopausal women. Bone. 2007;40(3):723–9.

    Article  CAS  PubMed  Google Scholar 

  81. Henriksen DB, Alexandersen P, Hartmann B, Adrian CL, Byrjalsen I, Bone HG, et al. Four-month treatment with GLP-2 significantly increases hip BMD: a randomized, placebo-controlled, dose-ranging study in postmenopausal women with low BMD. Bone. 2009;45(5):833–42.

    Article  CAS  PubMed  Google Scholar 

  82. Haderslev KV, Jeppesen PB, Hartmann B, Thulesen J, Sorensen HA, Graff J, et al. Short-term administration of glucagon-like peptide-2. Effects on bone mineral density and markers of bone turnover in short-bowel patients with no colon. Scand J Gastroenterol. 2002;37(4):392–8.

    Article  CAS  PubMed  Google Scholar 

  83. Kreymann B, Ghatei M, Williams G, Bloom S. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet. 1987;330(8571):1300–4.

    Article  Google Scholar 

  84. Korner M, Stockli M, Waser B, Reubi JC. GLP-1 receptor expression in human tumors and human normal tissues: potential for in vivo targeting. J Nucl Med: Off Publ Soc Nucl Med. 2007;48(5):736–43.

    Article  CAS  Google Scholar 

  85. Pyke C, Heller RS, Kirk RK, Orskov C, Reedtz-Runge S, Kaastrup P, et al. GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. Endocrinology. 2014;155(4):1280–90.

    Article  PubMed  Google Scholar 

  86. Bang-Berthelsen CH, Holm TL, Pyke C, Simonsen L, Sokilde R, Pociot F, et al. GLP-1 induces barrier protective expression in Brunner’s glands and regulates colonic inflammation. Inflamm Bowel Dis. 2016;22(9):2078–97.

    Article  PubMed  Google Scholar 

  87. Bojanowska E, Stempniak B. Effects of glucagon-like peptide-1 (7-36) amide on neurohypophysial hormone secretion induced by acute hyperosmotic challenge. Neuropeptides. 2003;37(1):45–50.

    Article  CAS  PubMed  Google Scholar 

  88. Mima A, Hiraoka-Yamomoto J, Li Q, Kitada M, Li C, Geraldes P, et al. Protective effects of GLP-1 on glomerular endothelium and its inhibition by PKCbeta activation in diabetes. Diabetes. 2012;61(11):2967–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ussher JR, Drucker DJ. Cardiovascular actions of incretin-based therapies. Circ Res. 2014;114(11):1788–803.

    Article  CAS  PubMed  Google Scholar 

  90. Amato A, Baldassano S, Liotta R, Serio R, Mule F. Exogenous glucagon-like peptide 1 reduces contractions in human colon circular muscle. J Endocrinol. 2014;221(1):29–37.

    Article  CAS  PubMed  Google Scholar 

  91. Wei Y, Mojsov S. Tissue-specific expression of the human receptor for glucagon-like peptide-I: brain, heart and pancreatic forms have the same deduced amino acid sequences. FEBS Lett. 1995;358(3):219–24.

    Article  CAS  PubMed  Google Scholar 

  92. Meier JJ, Nauck MA, Pott A, Heinze K, Goetze O, Bulut K, et al. Glucagon-like peptide 2 stimulates glucagon secretion, enhances lipid absorption, and inhibits gastric acid secretion in humans. Gastroenterology. 2006;130(1):44–54.

    Article  CAS  PubMed  Google Scholar 

  93. Wojdemann M, Wettergren A, Hartmann B, Hilsted L, Holst JJ. Inhibition of sham feeding-stimulated human gastric acid secretion by glucagon-like peptide-2. J Clin Endocrinol Metab. 1999;84(7):2513–7.

    Article  CAS  PubMed  Google Scholar 

  94. Clowes J, Xiao J, Eastell R, Khosla S, editors. Evidence that gut hormone receptors are expressed on circulating peripheral blood cells. J Bone Mineral Res. 2005: Am Soc Bone Mineral Res 2025 M ST, NW, STE 800, Washington, DC 20036–3309 USA.

    Google Scholar 

  95. Guan X. The CNS glucagon-like peptide-2 receptor in the control of energy balance and glucose homeostasis. Am J Phys Regul Integr Comp Phys. 2014;307(6):R585–96.

    CAS  Google Scholar 

  96. Nyberg J, Anderson MF, Meister B, Alborn A-M, Ström A-K, Brederlau A, et al. Glucose-dependent insulinotropic polypeptide is expressed in adult hippocampus and induces progenitor cell proliferation. J Neurosci. 2005;25(7):1816–25.

    Article  CAS  PubMed  Google Scholar 

  97. Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn A-M, Nordborg C, Peterson DA, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4(11):1313–7.

    Article  CAS  PubMed  Google Scholar 

  98. McIntosh CH. Dipeptidyl peptidase IV inhibitors and diabetes therapy. Front Biosci. 2008;13:1753–73.

    Article  CAS  PubMed  Google Scholar 

  99. Kawanami D, Matoba K, Sango K, Utsunomiya K. Incretin-based therapies for diabetic complications: basic mechanisms and clinical evidence. Int J Mol Sci. 2016;17(8):1223.

    Article  PubMed Central  Google Scholar 

  100. Holscher C. The incretin hormones glucagonlike peptide 1 and glucose-dependent insulinotropic polypeptide are neuroprotective in mouse models of Alzheimer’s disease. Alzheimers Dement: J Alzheimers Assoc. 2014;10(1 Suppl):S47–54.

    Article  Google Scholar 

  101. Figueiredo CP, Pamplona FA, Mazzuco TL, Aguiar AS Jr, Walz R, Prediger RD. Role of the glucose-dependent insulinotropic polypeptide and its receptor in the central nervous system: therapeutic potential in neurological diseases. Behav Pharmacol. 2010;21(5–6):394–408.

    Article  CAS  PubMed  Google Scholar 

  102. During MJ, Cao L, Zuzga DS, Francis JS, Fitzsimons HL, Jiao X, et al. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat Med. 2003;9(9):1173–9.

    Article  CAS  PubMed  Google Scholar 

  103. Figueiredo CP, Antunes VL, Moreira EL, de Mello N, Medeiros R, Di Giunta G, et al. Glucose-dependent insulinotropic peptide receptor expression in the hippocampus and neocortex of mesial temporal lobe epilepsy patients and rats undergoing pilocarpine induced status epilepticus. Peptides. 2011;32(4):781–9.

    Article  CAS  PubMed  Google Scholar 

  104. El-Jamal N, Erdual E, Neunlist M, Koriche D, Dubuquoy C, Maggiotto F, et al. Glucagon-like peptide-2: broad receptor expression, limited therapeutic effect on intestinal inflammation and novel role in liver regeneration. Am J Physiol Gastrointest Liver Physiol. 2014;307(3):G274–85.

    Article  CAS  PubMed  Google Scholar 

  105. Amato A, Baldassano S, Mule F. GLP2: an underestimated signal for improving glycaemic control and insulin sensitivity. J Endocrinol. 2016;229(2):R57–66.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos M. Isales MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramsey, W., Isales, C.M. (2017). Intestinal Incretins and the Regulation of Bone Physiology. In: McCabe, L., Parameswaran, N. (eds) Understanding the Gut-Bone Signaling Axis. Advances in Experimental Medicine and Biology, vol 1033. Springer, Cham. https://doi.org/10.1007/978-3-319-66653-2_2

Download citation

Publish with us

Policies and ethics