Skip to main content

Two Novel Clustering Performance Measures Based on Coherence and Relative Assignments of Clusters

  • Conference paper
  • First Online:
Advances in Computing (CCC 2017)

Abstract

This work proposes two novel alternatives for dealing with the highly important issue of the clustering performance estimation. One of the measures is the cluster coherence aimed to quantifying the normalized ratio of cuts within a graph-partitioning framework, and therefore it uses a graph-driven approach to explore the nature of data regarding the cluster assignment. The another one is the probability-based-performance quantifier, which calculates a probability value for each cluster through relative frequencies. Proposed measures are tested on some clustering representative techniques applied to real and artificial data sets. Experimental results probe the readability and robustness to noisy labels of our measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal, A., Triggs, B.: Monocular human motion capture with a mixture of regressors. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, 2005, CVPR Workshops, p. 72. IEEE (2005)

    Google Scholar 

  2. Truong Cong, D., Khoudour, L., Achard, C., Meurie, C., Lezoray, O.: People re-identification by spectral classification of silhouettes. Signal Process. 90(8), 2362–2374 (2010)

    Article  MATH  Google Scholar 

  3. You, L., Zhou, S., Gao, G., Leng, M.: Scalable spectral clustering combined with adjacencies merging for image segmentation. In: Wu, Y. (ed.) Advances in Computer, Communication, Control and Automation. LNEE, vol. 121. Springer, Heidelberg (2012)

    Google Scholar 

  4. Wang, L., Dong, M.: Multi-level low-rank approximation-based spectral clustering for image segmentation. Pattern Recogn. Lett. 33(16), 2206–2215 (2012)

    Article  Google Scholar 

  5. Molina-Giraldo, S., Álvarez-Meza, A., Peluffo-Ordoñez, D., Castellanos-Domínguez, G.: Image segmentation based on multi-kernel learning and feature relevance analysis. In: Advances in Artificial Intelligence-IBERAMIA 2012, pp. 501–510 (2012)

    Google Scholar 

  6. Ekin, A., Pankanti, S., Hampapur, A.: Initialization-independent spectral clustering with applications to automatic video analysis. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004, Proceedings ICASSP 2004, vol. 3, pp. 3–641. IEEE (2004)

    Google Scholar 

  7. Zhang, D., Lin, C., Chang, S., Smith, J.: Semantic video clustering across sources using bipartite spectral clustering. In: 2004 IEEE International Conference on Multimedia and Expo, ICME 2004, vol. 1, pp. 117–120. IEEE (2004)

    Google Scholar 

  8. Stella, X.Y., Shi, J.: Multiclass spectral clustering. In: ICCV, pp. 313–319 (2003)

    Google Scholar 

  9. Wolf, L., Shashua, A.: Feature selection for unsupervised and supervised inference: the emergence of sparsity in a weight-based approach. J. Mach. Learn. 6, 1855–1887 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Stella, X.Y., Jianbo, S.: Multiclass spectral clustering. In: ICCV 2003: Proceedings of the Ninth IEEE International Conference on Computer Vision, p. 313. IEEE Computer Society, Washington (2003)

    Google Scholar 

  11. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, Oakland, CA, USA, pp. 281–297 (1967)

    Google Scholar 

  12. Bezdek, J.C., Ehrlich, R., Full, W.: Fcm: The fuzzy c-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984)

    Article  Google Scholar 

  13. Ng, A.Y., Jordan, M.I., Weiss, Y., et al.: On spectral clustering: analysis and an algorithm. In: NIPS, vol. 14, pp. 849–856 (2001)

    Google Scholar 

  14. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: NIPS, vol. 17, p. 16 (2004)

    Google Scholar 

  15. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: Cluster validity methods: part i. ACM Sigmod Rec. 31(2), 40–45 (2002)

    Article  Google Scholar 

  16. Amigó, E., Gonzalo, J., Artiles, J., Verdejo, F.: A comparison of extrinsic clustering evaluation metrics based on formal constraints. Inf. Retrieval 12(4), 461–486 (2009)

    Article  Google Scholar 

  17. Beauchemin, M.: A density-based similarity matrix construction for spectral clustering. Neurocomputing 151, 835–844 (2015)

    Article  Google Scholar 

  18. Chen, G., Jaradat, S.A., Banerjee, N., Tanaka, T.S., Ko, M.S., Zhang, M.Q.: Evaluation and comparison of clustering algorithms in analyzing es cell gene expression data. Statistica Sinica 12, 241–262 (2002). http://www.jstor.org/stable/24307044?seq=1#page_scan_tab_contents

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Castro-Ospina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Areiza-Laverde, H.J., Castro-Ospina, A.E., Rosero-Montalvo, P., Peluffo-Ordóñez, D.H., Rodríguez-Sotelo, J.L., Becerra-Botero, M.A. (2017). Two Novel Clustering Performance Measures Based on Coherence and Relative Assignments of Clusters. In: Solano, A., Ordoñez, H. (eds) Advances in Computing. CCC 2017. Communications in Computer and Information Science, vol 735. Springer, Cham. https://doi.org/10.1007/978-3-319-66562-7_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66562-7_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66561-0

  • Online ISBN: 978-3-319-66562-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics