Skip to main content

Endophytic Fungi: Eco-Friendly Future Resource for Novel Bioactive Compounds

  • Chapter
  • First Online:
Endophytes: Biology and Biotechnology

Abstract

The current research focuses on the isolation of bioactive compounds from the natural sources which have immense potential for pharmaceutical value. Pharmaceutical biology perceives plants as a unique resource of potentially precious remedial bioactive metabolites. But due to slow growth and harvest of endangerd plants species pose a threat and inbalance in the biodiversity of plants. However, most of the plant species occur on the earth to be a reservoir of vast numbers of endophytic microorganisms like bacteria, actinomycetes, and fungi that play an imperative role in the production of novel secondary metabolites for the defense of host and can be utilized for treatment of a number of ailments. Search for isolation and characterization of different plant-associated fungal origin novel bioactive metabolites are given an immense attention to global investigators. The endophytic fungi are an enormous manufacturer of bioactive compounds which can be widely used in the medical, agricultural, and industrial application. Therefore, there is a need to isolate, identify, and characterize these bioactive compounds from the endophytic fungi. Further, research on the biology of endophytes is also required to saturate at the molecular level for a better understanding of host–endophyte interactions and biosynthesis of secondary metabolites thereby. Modern technologies have opened new avenue on endophytic research as natural “warehouse” with very little has been able to tap from this source so far and among the reported natural bioactive metabolites. Thus, there is more research and studies on these groups of endophytic microorganisms are required. The collaboration among chemists and mycologists are needed to comprehend the biology of endophytic fungi and may help to learn the different pathways involved in synthesis of bioactive compounds, and the ecology of the organisms will help to understand the optimization parameters of the organism for the maximum metabolites production, and mycologist will have the chance to increase further imminence into the multifarious diversity of endophytic fungal species. The present review is made on endophytic fungi, biosynthetic pathways responsible for the production of novel bioactive compounds from these microorganisms and their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal GP, Hasija SK (1980) Microorganism in the laboratory. In: A laboratory guide of mycology, microbiology and plant pathology. Ravi printers, Jabalpur India

    Google Scholar 

  • Aharwal RP, Kumar S, Sandhu SS (2016) Endophytic mycoflora as a source of biotherapeutic compounds for disease treatment. J App Pharm Sci 6(10):242–254

    Article  Google Scholar 

  • Altomare C, Perrone G, Zonno MC, Evidente A, Pengue R, Fanti F et al (2000) Biological characterization of fusapyrone and deoxyfusapyrone two bioactive secondary metabolites of Fusarium semitectum. J Nat Prod 63(8):1131–1135

    Article  CAS  PubMed  Google Scholar 

  • Bacon CW, White JF (1994) Biotechnology of endophytic fungi of grasses. CRC Press, Boca Raton

    Google Scholar 

  • Bastaki S (2005) Review: diabetes mellitus Mappersons and its treatment. Int J Diab Metabol 13:111–134

    Google Scholar 

  • Bills GF (1996) Isolation and analysis of endophytic fungal communities from woody plants. In: Erdlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants. APS Press, St Paul

    Google Scholar 

  • Bram RJ, Hung DT, Martin PK, Schreiber SL, Crabtree GR (1993) Identification of the immunophilins capable of mediating inhibition of signal transduction by cyclosporin A and FK506: roles of calcineurin binding and cellular location. Mol Cell Biol 13:4760–4769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bultman TL, Murphy JC (2000) Do fungal endophytes mediate wound-induced resistance? microbial endophytes. Marcel Dekker, New York, pp 421–452

    Google Scholar 

  • Cabral D, Cafaro MJ, Saidman B, Lugo M, Reddy PV, White JF Jr (1999) Evidence supporting the occurrence of a new species of endophyte in some South American grasses. Mycologia 91:315–325

    Article  Google Scholar 

  • Carroll GC (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69:2–9

    Article  Google Scholar 

  • Carvalho PLND, Oliveira PA, Gois-Ruiz ALT, Alencar SMD, Pfenning LH, Carvalho JED et al (2012) Paraconiothyrium sp. P83F4/1: antioxidant and antiproliferative activities an endophytic fungus associated with Rheedia brasiliensis plant. Int J Biotech Well Indus 1:172–176

    Google Scholar 

  • Clay K (1988) Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69(1):10–16

    Article  Google Scholar 

  • Cox RJ, Simpson TJ (2009) Complex enzymes in microbial natural product biosynthesis, part B: Polyketides, aminocoumarins and carbohydrates. Chapter 3: Fungal type I polyketide synthases. Methods Enzymol 459:49–98

    Article  CAS  PubMed  Google Scholar 

  • Cronan JE, Thomas J (2009) Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. Methods Enzymol 459:395–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui J, Guo T, Chao J, Wang M (2016) Potential of endophytic fungi Phialocephala fortinii Rac56 in Rhodiola plant to produce Salidroside and p-Tyrosol. Molecule 21(502):2–13

    Google Scholar 

  • Daisy BH, Strobel GA, Castillo U, Ezra D, Sears J, Weaver DK (2002) Naphthalene an insect repellent is produced by Muscodor vitigenus a novel endophytic fungus. Microbiol 148:3737–3741

    Article  CAS  Google Scholar 

  • De Bary HA (1884) Vergleichende Morphologie und Biologie der Pilze Mycetozoen und Bacterien. Verlag von Wilhelm Engelmann, Leipzig

    Book  Google Scholar 

  • Demain AL (2000) Microbial natural products: a past with a future. In: Wrigley SK, Hayes MA, Thomas R, Chrystal EJT, Nicholson N (eds) Biodiversity: new leads for pharmaceutical and agrochemical industries. The Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  • Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. The J Antibiot 62:5–16

    Google Scholar 

  • Deshmukh S, Huckelhoven R, Schafer P (2006) The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc Nat Acad Sci 49:18450–18457

    Article  Google Scholar 

  • Dewick PM (1997) Medicinal natural products: a biosynthetic approach. Wiley, New York

    Google Scholar 

  • Dias DA, Urban S, Roessner U (2012) A historical overview of natural products in drug discovery. Metabolites 2(2):303–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dompeipen EJ, Srikandace Y, Suharso WP, Cahyana H, Simanjuntak P (2011) Potential endohytic microbes’ selection for anti-diabetic bioactive compounds production. Asia J Biochem 6(6):465–471

    Article  CAS  Google Scholar 

  • Domsch KH, Gamas W, Anderson TH (1980) Compendium of soil fungi. Academic press, New York, pp 168–169

    Google Scholar 

  • Domsch KH, Gams W, Anderson TH (2007). Compendium of soil fungi. (2nd eds) IHW—Verlag, Eching

    Google Scholar 

  • Egorov N (1995) Microorganisms- antagonists and biological methods for evaluation of antibiotic activity. Vissha shkola, Moskva, p 200

    Google Scholar 

  • Elya B, Katrin, Munim A, Yuliastuti W, Bangun A, Kurnia SE (2012) Screening of α-glucosidase inhibitory activity from some plants of apocynaceae, clusiaceae, euphorbiaceae,and rubiaceae. J Bio med Biotechnol, 1–6

    Google Scholar 

  • Findlay JA, Buthelezi S, Li G, Seveck M, Miller JD (1997) Insect toxins from an endophytic fungus from Wintergreen. J Nat Prod 60:1214–1215

    Article  CAS  Google Scholar 

  • Finking R, Marahiel MA (2004) Biosynthesis of nonribosomal peptides. Annu Rev Microbiol 58:453–488

    Article  CAS  PubMed  Google Scholar 

  • Firakova S, Sturdikova M, Muckova M (2007) Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia 62(3):251–257

    Article  CAS  Google Scholar 

  • Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: Logic, machinery, and mechanisms. Chem Rev 106:3468–3496

    Article  CAS  PubMed  Google Scholar 

  • Fitriani A, Herdiansyah SA (2016) Detection of Nonribosomal peptide synthetase (NRPS) genes on bacterial endophytes from Vetiveria zizanioides L. and Ageratum conyzoides L. Int J Pharm Sci Rev Res 36(1):124–128

    Google Scholar 

  • Freeman EM (1904) The seed fungus of Lolium temulentum L. Phil Trans R Soc Lond (Biol) 196:1–27

    Article  Google Scholar 

  • Fukami A, Nakamura T, Kim YP, Shiomi K, Hayashi M, Nagai T et al (2000) A new anti-influenza virus antibiotic-10-norparvulenone from Microsphaeropsis sp. FO-5050. J Antibiotics 53:1215–1218

    Article  CAS  Google Scholar 

  • Gohel V, Singh A, Vimal M, Ashwini P, Chhatpar HS (2006) Bio-prospecting and antifungal potential of chitinolytic microorganisms. Afric J Biotechnol 5:54–72

    Google Scholar 

  • Golinska P, Wypij M, Agarkar G, Rathod D, Dahm H, Rai M (2015) Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Antonie Van Leeuwenhoek 108(2):267–289

    Article  PubMed  PubMed Central  Google Scholar 

  • Gunatilaka AAL (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69(3):505–526

    Article  Google Scholar 

  • Guo LD, Hyde KD, Liew ECY (2000) Identification of endophytic fungi from Livistona chinensis (Palmae) using morphological and molecular techniques. New Phytol 147:617–630

    Article  CAS  Google Scholar 

  • Guo B, Wang Y, Sun X, Tang K (2008) Bioactive Natural Products from endophytes: a review. Appl Biochem Microbiol 44:136–142

    Article  CAS  Google Scholar 

  • Gupte M, Kulkarni P, Ganguli BN (2002) Antifungal antibiotics. Appl Microbiol Biotechnol 58:46–57

    Article  CAS  PubMed  Google Scholar 

  • Haider M, Hamzah AH, Ali HG (2009) Physiological regulation of protease and antibiotics in Penicillium sp. using submerged and solid state fermentation techniques. J Engi Sci Technol 4(1):81–89

    Google Scholar 

  • Hallman J, Sikora RA (1994) Influence of Fusarium oxysporum, a mutualistic fungal endophyte on Meloidogyne incognita infection of tomato. J Plant Disease Prot 101:475–481

    Google Scholar 

  • Hanefeld M, Schaper F (2007) The role of Alpha glucosidase inhibitors (acarbose). In: Mogensen CE (ed) Pharmacotherapy of diabetes: new developments improving life and prognosis for diabetic patient. Springer Science-Business Media, New York

    Google Scholar 

  • Hanson JR (2003) The classes of natural product and their isolation. In: Natural products: the secondary metabolites. The Royal Society of Chemistry

    Google Scholar 

  • Hay RJ (2003) Antifungal drugs used for systemic mycoses. Dermatol Clin 21:577–587

    Article  CAS  PubMed  Google Scholar 

  • Hertweck C, Luzhetskyy A, Rebets Y, Bechthold A (2007) Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat Prod Rep 24:162–190

    Article  CAS  PubMed  Google Scholar 

  • Hirsch G, Braun U (1992) Communities of parasitic microfungi. In: Winterhoff W (ed) Handbook of vegetative science, Volume 19. Fungi in vegetation science. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 225–250

    Google Scholar 

  • Hoffmeister D, Keller NP (2007) Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep 24:393–416

    Article  CAS  PubMed  Google Scholar 

  • Hranueli D, Peric N, Borovicka B (2001) Molecular biology of polyketide biosynthesis. Food Biotechnol 39(3):203–213

    CAS  Google Scholar 

  • Iznaga Y, Lemus M, González L, Garmendía L, Nadal L, Vallin C (2004) Antifungal activity of Actinomycetes from Cuban soils. Phytother Res 18:494–496

    Article  CAS  PubMed  Google Scholar 

  • Izumi E, Ueda-Nakamura T, Veiga VF Jr, Pinto AC, Nakamura CV (2012) Terpenes from Copaifera demonstrated in vitro antiparasitic and synergic activity. J Med Chem 55(7):2994–3001

    Article  CAS  PubMed  Google Scholar 

  • Jalgaonwala RE, Vishwas B, Raghunath M, Mahajan T (2011) A review: Natural products from plant associated endophytic fungi. J Microbiol Biotechnol Res 1(2):21–32

    Google Scholar 

  • Ji HF, Li XJ, Zhang HY (2009) Natural products and drug discovery. Can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia? EMBO Rep 10:194–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jianglin Y, Mou Y, Shan T, Li L, Zhou L, Wang M et al (2010) Antimicrobial metabolites from the endophytic fungus Pichia guilliermondii isolated from Paris polyphylla var. yunnanensis. Molecules 15:7961–7970

    Google Scholar 

  • Jouda JB, Fopossib JLD, Mbazoaa CD, Wandji J (2016) Antibacterial activity of the major compound of an endophytic fungus isolated from Garcinia preussii. J Appl Pharma Sci 6(6):026–029

    Article  Google Scholar 

  • Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism from biochemistry to genomics. Nat Rev Microbiol 3:937–947

    Article  CAS  PubMed  Google Scholar 

  • Kiranmayi MU, Sudhakar P, Sreenivasulu K, Vijayalakshmi M (2011) Optimization of culturing conditions for improved production of bioactive metabolites by Pseudonocardia sp. VUK-10. Mycobiol 39(3):174–181

    Google Scholar 

  • Kumar A, Patil D, Rajamohanan PR, Ahmad A (2013) Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PloS One, 16;8(9):e71805

    Google Scholar 

  • Kusari S, Spiteller M (2012) Metabolomics of endophytic fungi producing associated plant secondary metabolites: progress, challenges and opportunities. In: Roessner U (ed) Metabolomics. Rijeka, Croatia, InTech, pp 241–266

    Google Scholar 

  • Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28(3):1287–1294

    Article  CAS  PubMed  Google Scholar 

  • Li E, Jiang L, Guo L, Zhang H, Che Y (2008) Pestalachlorides A-C, antifungal metabolites from the plant endophytic fungus Pestalotiopsis adusta. Bioorg Med Chem 16:7894–7899

    Article  CAS  PubMed  Google Scholar 

  • Lilly VG, Barnett HL (1951) Physiology of fungi. Mc Graw Hill Book Co. Inc., New York, Toronto, London

    Google Scholar 

  • Manitto P, Sammes PG (1981) Biosynthesis of natural products. Ellis Horwood Ltd. Mao XB, Eksriwong T, Chauvatcharin S and Zhong JJ (2005). Optimization of carbon source and carbon/nitrogen ratio for cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris. Process Biochem, 40(5):1667–1672

    Google Scholar 

  • Merlin JN, Nimal IVS, Christhudas KP, Agastian P (2013) Optimization of growth and bioactive metabolite production from Fusarium solani. Asia J Pharma Clin Res 6(3):98–103

    Google Scholar 

  • Miles CO, Mena ME, Jacobs SWL, Garthwaite I, Lane GA, Prestidge RA et al (1998) Endophytic fungi in indigenous Australasian grasses associated with toxicity to livestock. Appl Env Microbiol 64:601–606

    CAS  Google Scholar 

  • Obuchi T, Kondoh H, Omura S, Yang JS, Liang XT (1990) Armillaric acid, a new antibiotic produced by Armillaria mellea. Plants Med 56:198–201

    Article  CAS  Google Scholar 

  • Owen NL, Hundley N (2004) Endophytes - The chemical synthesizers inside plants. Sci Prog 87(2):79–99

    Article  CAS  PubMed  Google Scholar 

  • Petrini O (1986) Taxonomy of endophytic fungi of aerial plant tissues. In: Fokkema NJ, van den Heuvel J (eds) Microbiology of phyllosphere. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Pimentel MR, Molina G, Dionısio AP, Junior RM, Pastore GM (2010) The use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol Res Intract, 1–11

    Google Scholar 

  • Pocasangre L, Sikora RA, Vilich V, Schuster RP (2000) Survey of banana endophytic fungi from Central America and screening for biological control of the burrowing nematode (Radopholus simili). Info Musa 9:3–5

    Google Scholar 

  • Premjanu N, Jayanthy C (2012) Endophytic fungi a repository of bioactive compounds: a review. Int J Institutional Pharm Life Sci 2(1):135–162

    Google Scholar 

  • Qi SH, Xu Y, Xiong HR, Qian PY, Zhang S (2009) Antifouling and antibacterial compounds from a marine fungus Cladosporium sp. F14. World J Microbio Biotechnol 25:399–406

    Article  CAS  Google Scholar 

  • Radu S, Kqueen CY (2003) Preliminary screening of endophytic fungi from medicinal plants in Malaysia for antimicrobial and antitumour activity. Malaysia J Med Sci 93:23–33

    Google Scholar 

  • Rai MK, Verma A (2005) Arbuscular mycorrhiza-like Biotechnological potential of Piriformospora indica, which promotes the growth of Adhatoda vasica Nees. Elec J Biotechnol 8:1–4

    Article  Google Scholar 

  • Rai MK, Acharya D, Singh A, Varma A (2001) Positive growth responses of the medicinal plants Spilanthes calva and Withania sonmifera to inoculation by Piriformospora indica in a field trial. Mycorrhiza 11:123–128

    Article  PubMed  Google Scholar 

  • Rakshith D, Sreedharamurthy S (2010) Endophytic fungi: ‘Trapped’ or ‘hidden’ store houses of bioactive compounds within plants. A Review. J Pharm Res 3(12):2986–2989

    Google Scholar 

  • Ramadanis R, Soemiati A, Munim A (2012) Isolation and glucosidase inhibitory activity of endophytic fungi from Mahogany (Swietenia macrophylla King) seeds. Int J Med Aroma Plants 2(3):447–452

    Google Scholar 

  • Raviraja NS, Sridhar KR, Barlocher F (1996) Endophytic aquatic hyphomycetes of roots of plantation crops and ferns from India. Sydowia 48:152–160

    Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F et al (2008) Stress tolerance in plants via habitat adapted symbiosis. ISME J 2(4):404–416

    Article  PubMed  Google Scholar 

  • Rubini MR, Silva-Ribeiro RT, Pomella AWV, Maki CS, Araujo WL, Santos DR et al (2005) Diversity of endophytic fungal community of Cacao (Teobroma cacao L.) and biological control of Crinipellis perniciosa causal agent of witches broom disease. Int J Biol Sci 1:24–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samuel P, Prince L, Prabakaran A (2011) Antibacterial Activity of marine derived fungi collected from South East Coast of Tamilnadu. India. J Microbiol Biotechnol Res 1(4):86–94

    Google Scholar 

  • Sandey K, Aharwal RP, Kumar S, Sandhu SS (2015) Production and optimization of antibacterial metabolites from endophytic fungi Nigrospora sp.ML#3. J Appl Pharm Sci, 5(11):031–037

    Google Scholar 

  • Sandhu SS (1989) Epizootiological studies on Beauveria bassiana parasitizing Heliothis armigera Hub. Pod borer of gram (Cicer arietinum Linn.) PhD thesis, R.D. University, Jabalpur (M.P.) India

    Google Scholar 

  • Sandhu SS (2010) Recombinanat DNA technology. I.K. International Publishing house Pvt. Ltd., New Delhi India

    Google Scholar 

  • Sandhu SS, Aharwal RP, Kumar S (2014a) Isolation and antibacterial property of endophytic fungi isolated from Indian medicinal plant Calotropis procera (Linn.) R. Br. World J Pharm Pharm Sci 3(5):678–691

    Google Scholar 

  • Sandhu SS, Kumar S, Aharwal RP, Shukla H, Rajak RC (2014b) Endophytic fungi: as a source of antimicrobials bioactive compounds. World J Pharma Pharma Sci 3(2):1179–1797

    Google Scholar 

  • Sauer M (2002) Estimating polyketide metabolic potential among nonsporulating fungal endophytes of Vaccinium macrocarpon. Mycol Res 106:460–470

    Article  CAS  Google Scholar 

  • Schardl CL (2001) Epichloë festucae and related mutualistic symbionts of grasses. Fungal Gen Biol 33:69–82

    Article  CAS  Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbiosis of grasses with seed-borne fungal endophytes. Ann Rev Plant Biol 55:315–340

    Article  CAS  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109(6):661–686

    Article  PubMed  Google Scholar 

  • Schulz B, Wanke U, Draeger S, Aust HJ (1993) Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methods. Mycol Res 97:1447–1450

    Google Scholar 

  • Schumann J, Hertweck C (2006) Advances in cloning, functional analysis and heterologous expression of fungal polyketide synthase genes. J Biotechnol 124(4):690–703

    Article  PubMed  Google Scholar 

  • Schwarzer D, Marahiel MA (2001) Multimodular biocatalysts for natural product assembly. Naturwissenschaften 88:93–101

    Article  CAS  PubMed  Google Scholar 

  • Shan T, Lou J, Gao S, Zhou Y, Sun W, Luo C, Zhou L (2012) Antibacterial activity of the endophytic fungi from a traditional Chinese herb Paris polyphylla var. chinensis. Afr. J Microbiol 6(14):3440–3446

    Google Scholar 

  • Singh AK, Mukhopadhyay M (2012) Overview of fungal lipase: a review. Appl Biochem Biotechn 166:486–520

    Article  CAS  Google Scholar 

  • Smith S, Tsai SC (2007) The type I fatty acid and polyketide synthases: a tale of two megasynthases. Nat Prod Rep 24:1041–1072

    Google Scholar 

  • Stack D, Neville C, Doyle S (2007) Non-ribosomal peptide synthesis in Aspergillus fumigatus and other fungi. Microbiol 153:1297–1306

    Article  CAS  Google Scholar 

  • Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18:380–416

    Article  CAS  PubMed  Google Scholar 

  • Stone K, Bacon EW, White F (2000) An Overview of endophytic microbes: endophytism defined. In: Bacon EW, White F (eds) Microbial endophytes. Marcel Dekker Inc., New York, Basel, pp 3–29

    Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mole Biol Rev 67:491–502

    Google Scholar 

  • Sun C, Johnson JM, Cai D, Sherameti I, Oelmüller R, Lou B (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol 167(12):1009–1017

    Article  CAS  PubMed  Google Scholar 

  • Suthindhiran KR, Jayasri MA, Kannabiran K (2009) Α–Glucosidase and α–amylase inhibitory activity of Micromonospora sp. VITSDK3 (EU551238). Int J Integrative Biol 6(3):115–120

    Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  CAS  PubMed  Google Scholar 

  • Taylor J, Hyde K, Jones E (1999) Endophytic fungi associated with the temperate palm, Trachycarpus fortune, within and outside its natural geographic range. New Phytol 142:335–346

    Article  Google Scholar 

  • Tenguria RK, Khan FN, Quereshi S (2011) Endophytes - Mines of pharmacological therapeutics. World J Sci Tech 1(5):127–149

    CAS  Google Scholar 

  • Theantana T, Kanjanapothi D, Lumyong S (2011) in vitro inhibition of lipid peroxidation and the antioxidant system of endophytic fungi from Thai Medicinal Plants. Chiang Mai J Sci 39(3):429–444

    Google Scholar 

  • Uma SR, Ramesha BT, Ravikanth G, Rajesh PG, Vasudeva R, Ganeshaiah KN (2008) Chemical profiling of N. nimmoniana for camptothecin, an important anticancer alkaloid: towards the development of a sustainable production system. In: Ramawat KG, Merillion J (eds) Bioactive molecules and medicinal plants. Springer, Berlin

    Google Scholar 

  • Verdine GL (1996) The combinatorial chemistry of nature. Nature 7(384):11–13

    Google Scholar 

  • Verma S, Varma A, Rexer KH, Hassel A, Kost G, Sarbhoy A et al (1998) Piriformospora indica a new root-colonizing fungus. Mycologia 90:896–903

    Article  CAS  Google Scholar 

  • Vining LC (1990) Functions of secondary metabolites. Rev Microbiol 44:427

    Google Scholar 

  • Wall ME, Wani MC, Cook CE, Palmer KH, Mcphail AT, Sim GA (1966) Plant antitumor agents; the isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc 88(16):3888–3890

    Article  CAS  Google Scholar 

  • Wilson D (1993) Fungal endophytes: out of sight but should not to be our mind. Oikos 68:379–384

    Article  Google Scholar 

  • Wu Yougen, Girmy S, Silva VMD, Perry B, Hu X, Tan GT (2015) The role of endophytic fungus in the anticancer activity of Morrind citrifolia Linn. (Noni). Evid Based Complement Alternat Med, 1–8

    Google Scholar 

  • Yin H, Zhao Q, Sun FM, An T (2009) Gentiopicrin-producing endophytic fungus isolated from Gentiana macrophylla. Phytomed 16:793–797

    Article  CAS  Google Scholar 

  • Zain ME, Razak AA, El-Sheikh HH, Soliman HG, Khalil AM (2009) Influence of growth medium on diagnostic characters of Aspergillus and Penicillium species. Afr J Microbiol Res 3(5):280–286

    CAS  Google Scholar 

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Shi Y, Wang X, Zhang W, Lou K (2010) Isolation, Identification and insecticidal activity of endophyte from Achnatherum inebrians. Wei Sheng Wu Xue Bao 50(4):530–536

    CAS  PubMed  Google Scholar 

  • Zhang H, Sun X, Xu C (2016) Antimicrobial activity of endophytic fungus Fusarium sp. isolated from medicinal Honey suckles plant. Archiv Biol Sci Belgrade 68(1):25–30

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sardul Singh Sandhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sandhu, S.S., Kumar, S., Aharwal, R.P., Nozawa, M. (2017). Endophytic Fungi: Eco-Friendly Future Resource for Novel Bioactive Compounds. In: Maheshwari, D. (eds) Endophytes: Biology and Biotechnology. Sustainable Development and Biodiversity, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-66541-2_12

Download citation

Publish with us

Policies and ethics