Skip to main content

Application of LIPUS to Periodontal Tissue Regeneration

  • Chapter
  • First Online:
Therapeutic Ultrasound in Dentistry

Abstract

Exposure to ultrasound during the inflammatory phase of periodontal tissue repair leads to an acceleration of this phase, which may eventually lead to an anti-inflammatory effect by low-intensity pulsed ultrasound (LIPUS) exposure. LIPUS has also been shown to enhance collagen synthesis by fibroblasts. As a consequence, LIPUS may be a promising candidate of treatment remedy for periodontal diseases such as periodontitis and orthodontically induced root resorption. Recent in vitro studies suggested that LIPUS promotes osteogenic differentiation of human periodontal ligament (PDL) cells, which is associated with upregulation of Runx2 and integrin β1 and activation of bone morphogenetic protein-smad signaling. Furthermore, recent in vivo studies have shown that LIPUS can enhance periodontal tissue repair and regeneration, especially if combined with the other treatment remedies for periodontal diseases such as guided tissue regeneration (GTR). These suggest that LIPUS could potentially enhance periodontal tissue repair and regeneration combined with GTR and provide therapeutic benefits in periodontal tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ten Cate AR. The periodontium: oral histology, development, structure and function. St Louis, MO: Mosby; 2003. p. 276–9.

    Google Scholar 

  2. Bosshardt DD, Schroeder HE. Cementogenesis reviewed: a comparison between human premolars and rodent molars. Anat Rec. 1996;245:267–92.

    Article  Google Scholar 

  3. Hollender L, Ronneman A, Thilander B. Root resorption, marginal bone support and clinical crown length in orthodontically treated patients. Eur J Orthod. 1980;2:197–205.

    Article  Google Scholar 

  4. Kurol J, Owman-Moll P, Lundgren D. Time related root resorption after application of a controlled continuous orthodontic force. Am J Orthod Dentofac Orthop. 1996;110:303–10.

    Article  Google Scholar 

  5. Rita FN, David EW, James LG. Tooth resorption. Quint Int. 1999;30:9–25.

    Google Scholar 

  6. Sameshima GT, Sinclair PM. Predicting and preventing root resorption: Part II. Treatment factors. Am J Orthod Dentofac Orthop. 2001;119(5):511.

    Article  Google Scholar 

  7. Matias MA, Li H, Young WG, Bartold PM. Immunohistochemical localization of extracellular matrix proteins in the periodontium during cementogenesis in the rat molar. Arch Oral Biol. 2003;48:709–16.

    Article  Google Scholar 

  8. Dyson M, Pond JB, Joseph J, Warwick R. The stimulation of tissue regeneration by means of ultrasound. Clin Sci. 1968;35:273–85.

    PubMed  Google Scholar 

  9. Dyson M. Therapeutic applications of ultrasound. In: Nyborg WL, Ziskin MC, editors. Biological effects of ultrasound. New York, NY: Churchill Livingstone; 1985. p. 121–33.

    Google Scholar 

  10. Iashchenko LV, Ostapiak ZN, Semenov VL. The humoral mechanisms of the action of ultrasound in inflammatory lung diseases (an experimental study). Vopr Kurortol Fizioter Lech Fiz Kult. 1994;2:20–2.

    Google Scholar 

  11. Mukai S, Ito H, Nakagawa Y, Akiyama H, Miyamoto M, Nakamura T. Transforming growth factor-β1 mediates the effects of low-intensity pulsed ultrasound in chondrocytes. Ultrasound Med Biol. 2005;31:1713–21.

    Article  Google Scholar 

  12. Mortimer AJ, Dyson M. The effect of therapeutic ultrasound on calcium uptake in fibroblasts. Ultrasound Med Biol. 1988;14:499–506.

    Article  Google Scholar 

  13. Washio K, Iwata T, Mizutani M, Ando T, Yamato M, Okano T, Ishikawa I. Assessment of cell sheets derived from human periodontal ligament cells: a pre-clinical study. Cell Tissue Res. 2010;341:397–404.

    Article  Google Scholar 

  14. Yoshida T, Washio K, Iwata T, Okano T, Ishikawa I. Current status and future development of cell transplantation therapy for periodontal tissue regeneration. Int J Dent. 2012;2012:1–8.

    Article  Google Scholar 

  15. Matsuda N, Yokoyama K, Takeshita S, Watanabe M. Role of epidermal growth factor and its receptor in mechanical stress-induced differentiation of human periodontal ligament cells in vitro. Arch Oral Biol. 1988;43:987–97.

    Article  Google Scholar 

  16. Warden SJ, Favaloro JM, Bennell KL, McMeeken JM, Ng KW, Zajac JD, Wark JD. Low-intensity pulsed ultrasound stimulates a bone forming response in UMR-106 cells. Biochem Biophys Res Commun. 2001;286:443–50.

    Article  Google Scholar 

  17. Inubushi T, Tanaka E, Rego EB, Kitagawa M, Kawazoe A, Ohta A, et al. Effects of ultrasound on the proliferation and differentiation of cementoblast lineage cells. J Periodontol. 2008;79:1984–90.

    Article  Google Scholar 

  18. Mostafa NZ, Uludağ H, Dederich DN, Doschak MR, El-Bialy TH. Anabolic effects of low-intensity pulsed ultrasound on human gingival fibroblasts. Arch Oral Biol. 2009;54(8):743.

    Article  Google Scholar 

  19. Hu B, Zhang Y, Zhou J, Li J, Deng F, Wang Z, Song J. Low-intensity pulsed ultrasound stimulation facilitates osteogenic differentiation of human periodontal ligament cells. PLoS One. 2014;9:e95168.

    Article  Google Scholar 

  20. Yang Z, Ren L, Deng F, Wang Z, Song J. Low-intensity pulsed ultrasound induces osteogenic differentiation of human periodontal ligament cells through activation of bone morphogenetic protein-smad signaling. J Ultrasound Med. 2014;33:865–73.

    Article  Google Scholar 

  21. Dalla-Bona DA, Tanaka E, Oka H, Yamano E, Kawai N, Miyauchi M, et al. Effects of ultrasound on cementoblast metabolism in vitro. Ultrasound Med Biol. 2006;32:943–8.

    Article  Google Scholar 

  22. Rego EB, Inubushi T, Kawazoe A, Tanimoto K, Miyauchi M, Tanaka E, et al. Ultrasound stimulation induces PGE2 synthesis promoting cementoblastic differentiation through EP2/EP4 receptor pathway. Ultrasound Med Biol. 2010;36:907–15.

    Article  Google Scholar 

  23. Rego EB, Inubushi T, Miyauchi M, Kawazoe A, Tanaka E, Takata T, Tanne K. Ultrasound stimulation attenuates root resorption on rat replanted molars and impairs TNF-α signaling in vitro. J Periodont Res. 2011;46:648–54.

    Article  Google Scholar 

  24. Norvell SM, Alvarez M, Bidwell JP, Pavalko FM. Fluid shear stress induces beta-catenin signaling in osteoblasts. Calcif Tissue Int. 2004;75:396–404.

    Article  Google Scholar 

  25. El-Bialy T, El-Shamy I, Graber TM. Repair of orthodontically induced root resorption by ultrasound in humans. Am J Orthod Dentofac Orthop. 2004;126:186–93.

    Article  Google Scholar 

  26. Inubushi T, Tanaka E, Rego EB, Ohtani J, Kawazoe A, Tanne K, et al. Low-intensity ultrasound stimulation inhibits resorption of the tooth root induced by experimental force application. Bone. 2013;53:497–506.

    Article  Google Scholar 

  27. Al-Daghreer S, Doschak M, Sloan AJ, Major PW, Heo G, Scurtescu C, et al. Effect of low-intensity pulsed ultrasound on orthodontically induced root resorption in beagle dogs. Ultrasound Med Biol. 2014;40:1187–96.

    Article  Google Scholar 

  28. Gu XQ, Li YM, Guo J, Zhang LH, Li D, Gai XD. Effect of low intensity pulsed ultrasound on repairing the periodontal bone of Beagle canines. Asian Pac J Trop Med. 2014;7:325–8.

    Article  Google Scholar 

  29. Wang Y, Chai Z, Zhang Y, Deng F, Wang Z, Song J. Influence of low-intensity pulsed ultrasound on osteogenic tissue regeneration in a periodontal injury model: X-ray image alterations assessed by micro-computed tomography. Ultrasonics. 2014;54:1581–4.

    Article  Google Scholar 

  30. Zheng H, Lu L, Song JL, Deng F, Wang ZB. Low intensity pulsed ultrasound combined with guided tissue regeneration for promoting the repair of defect at canines periodontal fenestration in Beagle dogs. Zhonghua Kou Qiang Yi Xue Za Zhi. 2011;46:431–6.

    PubMed  Google Scholar 

  31. Ikai H, Tamura T, Watanabe T, Itou M, Sugaya A, Iwabuchi S, et al. Low-intensity pulsed ultrasound accelerates periodontal wound healing after flap surgery. J Periodontal Res. 2008;43:212–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tanaka, E., Inubushi, T., El-Bialy, T. (2018). Application of LIPUS to Periodontal Tissue Regeneration. In: El-Bialy, T., Tanaka, E., Aizenbud, D. (eds) Therapeutic Ultrasound in Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-319-66323-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66323-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66322-7

  • Online ISBN: 978-3-319-66323-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics