Skip to main content

Diabetes, Thrombosis, and Cardiovascular Risks

  • Chapter
  • First Online:
Platelets, Haemostasis and Inflammation

Part of the book series: Cardiac and Vascular Biology ((Abbreviated title: Card. vasc. biol.,volume 5))

  • 935 Accesses

Abstract

Patients with diabetes are at an increased cardiovascular risk, and alterations of the coagulation system are pivotal in this context and reduce responsiveness to certain anticoagulants. Following plaque rupture, platelets are the first to be activated stabilizing the developing clot. In diabetes, hyperglycemia, oxidative stress, and endothelial dysfunction contribute to platelet dysfunction resulting in procoagulant hyperreactivity. Adherence of platelets is followed by the formation of a cross-linked fibrin clot. Subjects with diabetes exhibit a tight and rigid clot structure which is due to upregulation of coagulation factors and prolongation of clot lysis. Metabolic alterations and upregulation of inflammatory processes in diabetes are thought to be the main underlying causes. More recently, other factors such as erythrocytes, microparticles, and neutrophil extracellular traps have emerged as new players in this context directly influencing both platelet function and coagulation. This chapter provides an overview concerning the changes that lead to alterations of coagulation in diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Haffner SM, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339:229–34.

    CAS  PubMed  Google Scholar 

  2. Emerging Risk Factors Collaboration, Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E, Ingelsson E, Lawlor DA, Selvin E, Stampfer M, Stehouwer CD, Lewington S, Pennells L, Thompson A, Sattar N, White IR, Ray KK, Danesh J. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215–22. https://doi.org/10.1016/S0140-6736(10)60484-9

    Article  CAS  Google Scholar 

  3. Angiolillo DJ, Ueno M, Goto S. Basic principles of platelet biology and clinical implications. Circ J. 2010;74:597–607.

    CAS  PubMed  Google Scholar 

  4. Watala C. Blood platelet reactivity and its pharmacological modulation in (people with) diabetes mellitus. Curr Pharm Des. 2005;11:2331–65.

    CAS  PubMed  Google Scholar 

  5. Ferroni P, Basili S, Falco A, Davì G. Platelet activation in type 2 diabetes mellitus. J Thromb Haemost. 2004;2:1282–91.

    CAS  PubMed  Google Scholar 

  6. Falcon C, Pfliegler G, Deckmyn H, Vermylen J. The platelet insulin receptor: detection, partial characterization, and search for a function. Biochem Biophys Res Commun. 1988;157:1190–6.

    CAS  PubMed  Google Scholar 

  7. Ferreira IA, Eybrechts KL, Mocking AI, Kroner C, Akkerman JW. IRS-1 mediates inhibition of Ca2+ mobilization by insulin via the inhibitory G-protein Gi. J Biol Chem. 2004;279:3254–64.

    CAS  PubMed  Google Scholar 

  8. Rao AK, Freishtat RJ, Jalagadugula G, Singh A, Mao G, Wiles A, Cheung P, Boden G. Alterations in insulin-signaling and coagulation pathways in platelets during hyperglycemia-hyperinsulinemia in healthy non-diabetic subject. Thromb Res. 2014;134(3):704–10. https://doi.org/10.1016/j.thromres.2014.06.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ferreira IA, Mocking AI, Feijge MA, Gorter G, van Haeften TW, Heemskerk JW, Akkerman JW. Platelet inhibition by insulin is absent in type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol. 2006;26:417–22.

    CAS  PubMed  Google Scholar 

  10. Davì G, Catalano I, Averna M, Notarbartolo A, Strano A, Ciabattoni G, Patrono C. Thromboxane biosynthesis and platelet function in type II diabetes mellitus. N Engl J Med. 1990;322:1769–74.

    PubMed  Google Scholar 

  11. Li Y, Woo V, Bose R. Platelet hyperactivity and abnormal Ca(2+) homeostasis in diabetes mellitus. Am J Physiol Heart Circ Physiol. 2001;280:H1480–9.

    CAS  PubMed  Google Scholar 

  12. Zheng Y, Wang L, Zhu Z, Yan X, Zhang L, Xu P, Luo D. Altered platelet calsequestrin abundance, Na+/Ca2+ exchange and Ca2+ signaling responses with the progression of diabetes mellitus. Thromb Res. 2014;134:674–81.

    CAS  PubMed  Google Scholar 

  13. Angiolillo DJ, Suryadevara S. Aspirin and clopidogrel: efficacy and resistance in diabetes mellitus. Best Pract Res Clin Endocrinol Metab. 2009;23:375–88.

    CAS  PubMed  Google Scholar 

  14. Ferretti G, Rabini RA, Bacchetti T, Vignini A, Salvolini E, Ravaglia F, Curatola G, Mazzanti L. Glycated low density lipoproteins modify platelet properties: a compositional and functional study. J Clin Endocrinol Metab. 2002;87:2180–4.

    CAS  PubMed  Google Scholar 

  15. Ha H, Lee HB. Oxidative stress in diabetic nephropathy: basic and clinical information. Curr Diab Rep. 2001;1:282–7.

    CAS  PubMed  Google Scholar 

  16. Davì G, Falco A, Patrono C. Determinants of F2-isoprostane biosynthesis and inhibition in man. Chem Phys Lipids. 2004;128:149–63.

    PubMed  Google Scholar 

  17. Hess K. The vulnerable blood. Coagulation and clot structure in diabetes mellitus. Hamostaseologie. 2015;35(1):25–33. https://doi.org/10.5482/HAMO-14-09-0039

    Article  PubMed  Google Scholar 

  18. De Vriese AS, Verbeuren TJ, Van de Voorde J, Lameire NH, Vanhoutte PM. Endothelial dysfunction in diabetes. Br J Pharmacol. 2000;130:963–74.

    PubMed  PubMed Central  Google Scholar 

  19. Ishida K, Taguchi K, Matsumoto T, Kobayashi T. Activated platelets from diabetic rats cause endothelial dysfunction by decreasing Akt/endothelial NO synthase signaling pathway. PLoS One. 2014;9(7). doi:https://doi.org/10.1371/journal.pone.0102310

    PubMed  PubMed Central  Google Scholar 

  20. Collet JP, Allali Y, Lesty C, Tanguy ML, Silvain J, Ankri A, Blanchet B, Dumaine R, Gianetti J, Payot L, Weisel JW, Montalescot G. Altered fibrin architecture is associated with hypofibrinolysis and premature coronary atherothrombosis. Arterioscler Thromb Vasc Biol. 2006;26:2567–73.

    CAS  PubMed  Google Scholar 

  21. Breitenstein A, Tanner FC, Lüscher TF. Tissue factor and cardiovascular disease. Circ J. 2010;74:3–12.

    CAS  PubMed  Google Scholar 

  22. Napoleone E, Di Santo A, Lorenzet R. Monocytes upregulate endothelial cell expression of tissue factor: a role for cell-cell contact and cross-talk. Blood. 1997;89:541–9.

    CAS  PubMed  Google Scholar 

  23. Steffel J, Hermann M, Greutert H, Gay S, Lüscher TF, Ruschitzka F, Tanner FC. Celecoxib decreases endothelial tissue factor expression through inhibition of c-Jun terminal NH2 kinase phosphorylation. Circulation. 2005;111:1685–9.

    CAS  PubMed  Google Scholar 

  24. Drake TA, Hannani K, Fei HH, Lavi S, Berliner JA. Minimally oxidized low-density lipoprotein induces tissue factor expression in cultured human endothelial cells. Am J Pathol. 1991;138:601–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Eto M, Kozai T, Cosentino F, Joch H, Lüscher TF. Statin prevents tissue factor expression in human endothelial cells: role of Rho/Rho-kinase and Akt pathways. Circulation. 2002;105:1756–9.

    CAS  PubMed  Google Scholar 

  26. Steffel J, Akhmedov A, Greutert H, Lüscher TF, Tanner FC. Histamine induces tissue factor expression: implications for acute coronary syndromes. Circulation. 2005;112:341–9.

    CAS  PubMed  Google Scholar 

  27. Bouchard BA, Gissel MT, Whelihan MF, Mann KG, Butenas S. Platelets do not express the oxidized or reduced forms of tissue factor. Biochim Biophys Acta. 2014;1840:1188–93.

    CAS  PubMed  Google Scholar 

  28. Østerud B, Olsen JO. Human platelets do not express tissue factor. Thromb Res. 2013;132:112–5.

    PubMed  Google Scholar 

  29. Müller I, Klocke A, Alex M, Kotzsch M, Luther T, Morgenstern E, Zieseniss S, Zahler S, Preissner K, Engelmann B. Intravascular tissue factor initiates coagulation via circulating microvesicles and platelets. FASEB J. 2003;17:476–8.

    PubMed  Google Scholar 

  30. Panes O, Matus V, Sáez CG, Quiroga T, Pereira J, Mezzano D. Human platelets synthesize and express functional tissue factor. Blood. 2007;109:5242–50.

    CAS  PubMed  Google Scholar 

  31. Vignoli A, Giaccherini C, Marchetti M, Verzeroli C, Gargantini C, Da Prada L, Giussani B, Falanga A. Tissue factor expression on platelet surface during preparation and storage of platelet concentrates. Transfus Med Hemother. 2013;40:126–32.

    PubMed  PubMed Central  Google Scholar 

  32. Samad F, Pandey M, Loskutoff DJ. Tissue factor gene expression in the adipose tissues of obese mice. Proc Natl Acad Sci USA. 1998;95:7591–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Boden G, Vaidyula VR, Homko C, Cheung P, Rao AK. Circulating tissue factor procoagulant activity and thrombin generation in patients with type 2 diabetes: effects of insulin and glucose. J Clin Endocrinol Metab. 2007;92:4352–8.

    CAS  PubMed  Google Scholar 

  34. Wang J, Ciaraldi TP, Samad F. Tissue factor expression in obese type 2 diabetic subjects and its regulation by antidiabetic agents. J Obes. 2015;2015:291209. https://doi.org/10.1155/2015/291209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stegenga ME, van der Crabben SN, Levi M, de Vos AF, Tanck MW, Sauerwein HP, van der Poll T. Hyperglycemia stimulates coagulation, whereas hyperinsulinemia impairs fibrinolysis in healthy humans. Diabetes. 2006;55:1807–12.

    CAS  PubMed  Google Scholar 

  36. Singh A, Boden G, Rao AK. Tissue factor and Toll-like receptor (TLR)4 in hyperglycaemia-hyperinsulinaemia. Effects in healthy subjects, and type 1 and type 2 diabetes mellitus. Thromb Haemost. 2015;113(4):750–8. https://doi.org/10.1160/TH14-10-0884

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gerrits AJ, Koekman CA, van Haeften TW, Akkerman JW. Platelet tissue factor synthesis in type 2 diabetes patients is resistant to inhibition by insulin. Diabetes. 2010;59:1487–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Min C, Kang E, Yu S, Shinn SH, Kim YS. Advanced glycation end products induce apoptosis and procoagulant activity in cultured human umbilical vein endothelial cells. Diabetes Res Clin Pract. 1999;46:197–202.

    CAS  PubMed  Google Scholar 

  39. Meade TW, Mellows S, Brozovic M, Miller GJ, Chakrabarti RR, North WR, Haines AP, Stirling Y, Imeson JD, Thompson SG. Haemostatic function and ischaemic heart disease: principal results of the Northwick Park Heart Study. Lancet. 1986;2:533–7.

    CAS  PubMed  Google Scholar 

  40. Kario K, Miyata T, Sakata T, Matsuo T, Kato H. Fluorogenic assay of activated factor VII. Plasma factor VIIa levels in relation to arterial cardiovascular diseases in Japanese. Arterioscler Thromb. 1994;14:265–74.

    CAS  PubMed  Google Scholar 

  41. Folsom AR, Wu KK, Rosamond WD, Sharrett AR, Chambless LE. Prospective study of hemostatic factors and incidence of coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) Study. Circulation. 1997;96:1102–8.

    CAS  PubMed  Google Scholar 

  42. Green D, Foiles N, Chan C, Schreiner P, Liu K. Elevated fibrinogen levels and subsequent subclinical atherosclerosis: the CARDIA Study. Atherosclerosis. 2009;202:623–31.

    CAS  PubMed  Google Scholar 

  43. Heinrich J, Balleisen L, Schulte H, Assmann G, van de Loo J. Fibrinogen and factor VII in the prediction of coronary risk. Results from the PROCAM study in healthy men. Arterioscler Thromb. 1994;14:54–9.

    CAS  PubMed  Google Scholar 

  44. Klein OL, Okwuosa T, Chan C, Schreiner P, Kanaya AM, Liu K, Green D. Changes in procoagulants track longitudinally with insulin resistance: findings from the coronary artery risk development in young adults (CARDIA) study. Diabet Med. 2014;31:462–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bruckert E, Carvalho de Sousa J, Giral P, Soria C, Chapman MJ, Caen J, de Gennes JL. Interrelationship of plasma triglyceride and coagulant factor VII levels in normotriglyceridemic hypercholesterolemia. Atherosclerosis. 1989;75:129–34.

    CAS  PubMed  Google Scholar 

  46. Mansfield MW, Heywood DM, Grant PJ. Circulating levels of factor VII, fibrinogen, and von Willebrand factor and features of insulin resistance in first-degree relatives of patients with NIDDM. Circulation. 1996;94:2171–6.

    CAS  PubMed  Google Scholar 

  47. Vambergue A, Rugeri L, Gaveriaux V, Devos P, Martin A, Fermon C, Fontaine P, Jude B. Factor VII, tissue factor pathway inhibitor, and monocyte tissue factor in diabetes mellitus: influence of type of diabetes, obesity index, and age. Thromb Res. 2001;101:367–75.

    CAS  PubMed  Google Scholar 

  48. Patrassi GM, Vettor R, Padovan D, Girolami A. Contact phase of blood coagulation in diabetes mellitus. Eur J Clin Invest. 1982;12(4):307–11. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6814921

    CAS  PubMed  Google Scholar 

  49. Barillari G, Fabbro E, Pasca S, Bigotto E. Coagulation and oxidative stress plasmatic levels in a type 2 diabetes population. Blood Coagul Fibrinolysis. 2009;20(4):290–6. https://doi.org/10.1097/MBC.0b013e328329e49b

    Article  CAS  PubMed  Google Scholar 

  50. Vischer UM. von Willebrand factor, endothelial dysfunction, and cardiovascular disease. J Thromb Haemost. 2006;4:1186–93.

    CAS  PubMed  Google Scholar 

  51. Frankel DS, Meigs JB, Massaro JM, Wilson PW, O'Donnell CJ, D'Agostino RB, Tofler GH. Von Willebrand factor, type 2 diabetes mellitus, and risk of cardiovascular disease: the framingham offspring study. Circulation. 2008;118:2533–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kistorp C, Chong AY, Gustafsson F, Galatius S, Raymond I, Faber J, Lip GY, Hildebrandt P. Biomarkers of endothelial dysfunction are elevated and related to prognosis in chronic heart failure patients with diabetes but not in those without diabetes. Eur J Heart Fail. 2008;10:380–7.

    CAS  PubMed  Google Scholar 

  53. Rumley A, Lowe GD, Sweetnam PM, Yarnell JW, Ford RP. Factor VIII, von Willebrand factor and the risk of major ischaemic heart disease in the Caerphilly Heart Study. Br J Haematol. 1999;105:110–6.

    CAS  PubMed  Google Scholar 

  54. Hess K, Grant PJ. Inflammation and thrombosis in diabetes. Thromb Haemost. 2011;105(Suppl):S43–54.

    CAS  PubMed  Google Scholar 

  55. Grant PJ. Diabetes mellitus as a prothrombotic condition. J Intern Med. 2007;262:157–72.

    CAS  PubMed  Google Scholar 

  56. Mahendra JV, Kumar SD, Anuradha TS, Talikoti P, Nagaraj RS, Vishali V. Plasma fibrinogen in type 2 diabetic patients with metabolic syndrome and its relation with ischemic heart disease (IHD) and retinopathy. J Clin Diagn Res. 2015;9(1):21. https://doi.org/10.7860/JCDR/2015/10712.5449

    Article  CAS  Google Scholar 

  57. Neergaard-Petersen S, Hvas AMM, Kristensen SD, Grove EL, Larsen SB, Phoenix F, Kurdee Z, Grant PJ, Ajjan RA. The influence of type 2 diabetes on fibrin clot properties in patients with coronary artery disease. Thromb Haemost. 2014;112(6):1142–50. https://doi.org/10.1160/TH14-05-0468

    Article  CAS  PubMed  Google Scholar 

  58. Dunn EJ, Ariëns RA. Fibrinogen and fibrin clot structure in diabetes. Herz. 2004;29:470–9.

    PubMed  Google Scholar 

  59. Jacquemin B, Antoniades C, Nyberg F, Plana E, Müller M, Greven S, Salomaa V, Sunyer J, Bellander T, Chalamandaris AG, Pistelli R, Koenig W, Peters A. Common genetic polymorphisms and haplotypes of fibrinogen alpha, beta, and gamma chains affect fibrinogen levels and the response to proinflammatory stimulation in myocardial infarction survivors: the AIRGENE study. J Am Coll Cardiol. 2008;52:941–52.

    CAS  PubMed  Google Scholar 

  60. Dunn EJ, Ariëns RA, Grant PJ. The influence of type 2 diabetes on fibrin structure and function. Diabetologia. 2005;48:1198–206.

    CAS  PubMed  Google Scholar 

  61. Lütjens A, te Velde AA, vd Veen EA, vd Meer J. Glycosylation of human fibrinogen in vivo. Diabetologia. 1985;28:87–9.

    PubMed  Google Scholar 

  62. Pieters M, Covic N, van der Westhuizen FH, Nagaswami C, Baras Y, Toit Loots D, Jerling JC, Elgar D, Edmondson KS, van Zyl DG, Rheeder P, Weisel JW. Glycaemic control improves fibrin network characteristics in type 2 diabetes – a purified fibrinogen model. Thromb Haemost. 2008;99:691–700.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kohler HP, Stickland MH, Ossei-Gerning N, Carter A, Mikkola H, Grant PJ. Association of a common polymorphism in the factor XIII gene with myocardial infarction. Thromb Haemost. 1998;79:8–13.

    CAS  PubMed  Google Scholar 

  64. Wang G, Zou Z, Ji X, Ni Q, Ma Z. Factor XIII-A Val34Leu polymorphism might be associated with myocardial infarction risk: an updated meta-analysis. Int J Clin Exp Med. 2014;7(12):5547–52. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25664069

  65. Hethershaw EL, Cilia La Corte AL, Duval C, Ali M, Grant PJ, Ariëns RA, Philippou H. The effect of blood coagulation factor XIII on fibrin clot structure and fibrinolysis. J Thromb Haemost. 2014;12:197–205.

    CAS  PubMed  Google Scholar 

  66. Mansfield MW, Kohler HP, Ariëns RA, McCormack LJ, Grant PJ. Circulating levels of coagulation factor XIII in subjects with type 2 diabetes and in their first-degree relatives. Diabetes Care. 2000;23:703–5.

    CAS  PubMed  Google Scholar 

  67. Schneider DJ, Nordt TK, Sobel BE. Attenuated fibrinolysis and accelerated atherogenesis in type II diabetic patients. Diabetes. 1993;42:1–7.

    CAS  PubMed  Google Scholar 

  68. Brazionis L, Rowley K, Jenkins A, Itsiopoulos C, O’Dea K. Plasminogen activator inhibitor-1 activity in type 2 diabetes: a different relationship with coronary heart disease and diabetic retinopathy. Arterioscler Thromb Vasc Biol. 2008;28:786–91.

    CAS  PubMed  Google Scholar 

  69. Nikolajsen CL, Scavenius C, Enghild JJ. Human complement C3 is a substrate for transglutaminases. A functional link between non-protease-based members of the coagulation and complement cascades. Biochemistry. 2012;51(23):4735–42. https://doi.org/10.1021/bi3004022

    Article  CAS  PubMed  Google Scholar 

  70. Richardson VR, Schroeder V, Grant PJ, Standeven KF, Carter AM. Complement C3 is a substrate for activated factor XIII that is cross-linked to fibrin during clot formation. Br J Haematol. 2013;160(1):116–9. https://doi.org/10.1111/bjh.12096

    Article  CAS  PubMed  Google Scholar 

  71. Hess K, Alzahrani SH, Mathai M, Schroeder V, Carter AM, Howell G, Koko T, Strachan MW, Price JF, Smith KA, Grant PJ, Ajjan RA. A novel mechanism for hypofibrinolysis in diabetes: the role of complement C3. Diabetologia. 2012;55(4):1103–13. https://doi.org/10.1007/s00125-011-2301-7

    Article  CAS  PubMed  Google Scholar 

  72. Hess K, Alzahrani SH, Price JF, Strachan MW, Oxley N, King R, Gamlen T, Schroeder V, Baxter PD, Ajjan RA. Hypofibrinolysis in type 2 diabetes: the role of the inflammatory pathway and complement C3. Diabetologia. 2014;57:1737–41.

    CAS  PubMed  Google Scholar 

  73. Howes JM, Richardson VR, Smith KA, Schroeder V, Somani R, Shore A, Hess K, Ajjan R, Pease RJ, Keen JN, Standeven KF, Carter AM. Complement C3 is a novel plasma clot component with anti-fibrinolytic properties. Diab Vasc Dis Res. 2012;9(3):216–25. https://doi.org/10.1177/1479164111432788

    Article  PubMed  Google Scholar 

  74. Brown GE, Ritter LS, McDonagh PF, Cohen Z. Functional enhancement of platelet activation and aggregation by erythrocytes: role of red cells in thrombosis. Peer J PrePrints. 2014;2:e351v351.

    Google Scholar 

  75. Wohner N. Role of cellular elements in thrombus formation and dissolution. Cardiovasc Hematol Agents Med Chem. 2008;6(3):224–8. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2496953/

    CAS  Google Scholar 

  76. Gersh KC, Nagaswami C, Weisel JW. Fibrin network structure and clot mechanical properties are altered by incorporation of erythrocytes. Thromb Haemost. 2009;102(6):1169–75. https://doi.org/10.1160/TH09-03-0199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Soma P, Pretorius E. Interplay between ultrastructural findings and atherothrombotic complications in type 2 diabetes mellitus. Cardiovasc Diabetol. 2015;14:96. https://doi.org/10.1186/s12933-015-0261-9

    Article  PubMed  PubMed Central  Google Scholar 

  78. Schwartz RS, Madsen JW, Rybicki AC, Nagel RL. Oxidation of spectrin and deformability defects in diabetic erythrocytes. Diabetes. 1991;40(6):701–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2040386

    CAS  PubMed  Google Scholar 

  79. Singh M, Shin S. Changes in erythrocyte aggregation and deformability in diabetes mellitus: a brief review. Indian J Exp Biol. 2009;47(1):7–15. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19317346

  80. Pretorius E. The adaptability of red blood cells. Cardiovasc Diabetol. 2013;12:63. https://doi.org/10.1186/1475-2840-12-63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Feng B, Chen Y, Luo Y, Chen M, Li X, Ni Y. Circulating level of microparticles and their correlation with arterial elasticity and endothelium-dependent dilation in patients with type 2 diabetes mellitus. Atherosclerosis. 2010;208:264–9.

    CAS  PubMed  Google Scholar 

  82. Puddu P, Puddu GM, Cravero E, Muscari S, Muscari A. The involvement of circulating microparticles in inflammation, coagulation and cardiovascular diseases. Can J Cardiol. 2010;26:140–5.

    PubMed  Google Scholar 

  83. Diamant M, Tushuizen ME, Sturk A, Nieuwland R. Cellular microparticles: new players in the field of vascular disease? Eur J Clin Investig. 2004;34:392–401.

    CAS  Google Scholar 

  84. Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004;10:1957–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, Ratajczak MZ. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006;20:847–56.

    CAS  PubMed  Google Scholar 

  86. Semeraro F, Ammollo CT, Morrissey JH, Dale GL, Friese P, Esmon NL, Esmon CT. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood. 2011;118:1952–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Stakos DA, Kambas K, Konstantinidis T, Mitroulis I, Apostolidou E, Arelaki S, Tsironidou V, Giatromanolaki A, Skendros P, Konstantinides S, Ritis K. Expression of functional tissue factor by neutrophil extracellular traps in culprit artery of acute myocardial infarction. Eur Heart J. 2015;7(22):1405–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Wong SL, Demers M, Martinod K, Gallant M, Wang Y, Goldfine AB, Kahn CR, Wagner DD. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med. 2015;21(7):815–9. https://doi.org/10.1038/nm.3887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Joshi MB, Lad A, Bharath Prasad AS, Balakrishnan A, Ramachandra L, Satyamoorthy K. High glucose modulates IL-6 mediated immune homeostasis through impeding neutrophil extracellular trap formation. FEBS Lett. 2013;587(14):2241–6. https://doi.org/10.1016/j.febslet.2013.05.053

    Article  CAS  PubMed  Google Scholar 

  90. Menegazzo L, Ciciliot S, Poncina N, Mazzucato M, Persano M, Bonora B, Albiero M, Vigili de Kreutzenberg S, Avogaro A, Fadini GP. NETosis is induced by high glucose and associated with type 2 diabetes. Acta Diabetol. 2015;52(3):497–503. https://doi.org/10.1007/s00592-014-0676-x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaus Marx .

Editor information

Editors and Affiliations

Compliance with Ethical Standards

Compliance with Ethical Standards

  • Conflict of Interest: Katharina Schuett and Nikolaus Marx declares that they have no conflict of interest.

  • Ethical Approval: This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schuett, K., Marx, N. (2017). Diabetes, Thrombosis, and Cardiovascular Risks. In: Zirlik, A., Bode, C., Gawaz, M. (eds) Platelets, Haemostasis and Inflammation. Cardiac and Vascular Biology, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-66224-4_7

Download citation

Publish with us

Policies and ethics