Skip to main content

Platelets and Innate Immunity in Atherosclerosis

  • Chapter
  • First Online:
Platelets, Haemostasis and Inflammation

Part of the book series: Cardiac and Vascular Biology ((Abbreviated title: Card. vasc. biol.,volume 5))

  • 913 Accesses

Abstract

Platelets are classically considered initiators of hemostasis and—in pathology—intravascular thrombosis causing diseases such as myocardial infarction or stroke. However, platelets are also mediators of innate immunity, secrete inflammatory proteins, mediate leukocyte recruitment, and contribute to tissue remodeling. Inflammation and innate immunity have common intersection points with the hemostatic system at various levels. With the complement system being part of the innate immune system, this chapter focuses on the role of platelets and the complement system in the context of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340:115–26.

    CAS  PubMed  Google Scholar 

  2. Kuijper PH, Gallardo Torres HI, Lammers JW, Sixma JJ, Koenderman L, Zwaginga JJ. Platelet and fibrin deposition at the damaged vessel wall: cooperative substrates for neutrophil adhesion under flow conditions. Blood. 1997;89:166–75.

    CAS  PubMed  Google Scholar 

  3. Langer HF, Bigalke B, Seizer P, Stellos K, Fateh-Moghadam S, Gawaz M. Interaction of platelets and inflammatory endothelium in the development and progression of coronary artery disease. Semin Thromb Hemost. 2010;36:131–8.

    CAS  PubMed  Google Scholar 

  4. Massberg S, Brand K, Gruner S, Page S, Muller E, Muller I, Bergmeier W, Richter T, Lorenz M, Konrad I, Nieswandt B, Gawaz M. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med. 2002;196:887–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Walport MJ. Complement. First of two parts. N Engl J Med. 2001;344:1058–66.

    CAS  PubMed  Google Scholar 

  6. Verschoor A, Carroll MC. Complement and its receptors in infection. In: Kaufmann SHE, Medzhitov R, Gordon S, editors. The innate immune response to infection. Washington, DC: American Society for Microbiology Press; 2004.

    Google Scholar 

  7. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11:785–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Aggarwal R, Sestak AL, D'Sousa A, Dillon SP, Namjou B, Scofield RH. Complete complement deficiency in a large cohort of familial systemic lupus erythematosus. Lupus. 2010;19:52–7.

    CAS  PubMed  Google Scholar 

  9. Jonsson G, Truedsson L, Sturfelt G, Oxelius VA, Braconier JH, Sjoholm AG. Hereditary c2 deficiency in sweden: frequent occurrence of invasive infection, atherosclerosis, and rheumatic disease. Medicine. 2005;84:23–34.

    PubMed  Google Scholar 

  10. Nityanand S, Truedsson L, Mustafa A, Bergmark C, Lefvert AK. Circulating immune complexes and complement c4 null alleles in patients in patients operated on for premature atherosclerotic peripheral vascular disease. J Clin Immunol. 1999;19:406–13.

    CAS  PubMed  Google Scholar 

  11. van der Net JB, Oosterveer DM, Versmissen J, Defesche JC, Yazdanpanah M, Aouizerat BE, Steyerberg EW, Malloy MJ, Pullinger CR, Kastelein JJ, Kane JP, Sijbrands EJ. Replication study of 10 genetic polymorphisms associated with coronary heart disease in a specific high-risk population with familial hypercholesterolemia. Eur Heart J. 2008;29:2195–201.

    PubMed  PubMed Central  Google Scholar 

  12. Madsen HO, Videm V, Svejgaard A, Svennevig JL, Garred P. Association of mannose-binding-lectin deficiency with severe atherosclerosis. Lancet. 1998;352:959–60.

    CAS  PubMed  Google Scholar 

  13. Hegele RA, Ban MR, Anderson CM, Spence JD. Infection-susceptibility alleles of mannose-binding lectin are associated with increased carotid plaque area. J Invest Med. 2000;48:198–202.

    CAS  Google Scholar 

  14. Best LG, Davidson M, North KE, MacCluer JW, Zhang Y, Lee ET, Howard BV, DeCroo S, Ferrell RE. Prospective analysis of mannose-binding lectin genotypes and coronary artery disease in american indians: the strong heart study. Circulation. 2004;109:471–5.

    PubMed  Google Scholar 

  15. Speidl WS, Exner M, Amighi J, Kastl SP, Zorn G, Maurer G, Wagner O, Huber K, Minar E, Wojta J, Schillinger M. Complement component c5a predicts future cardiovascular events in patients with advanced atherosclerosis. Eur Heart J. 2005;26:2294–9.

    CAS  PubMed  Google Scholar 

  16. Speidl WS, Kastl SP, Huber K, Wojta J. Complement in atherosclerosis: friend or foe? J Thromb Haemost. 2011;9:428–40.

    CAS  PubMed  Google Scholar 

  17. Laine P, Pentikainen MO, Wurzner R, Penttila A, Paavonen T, Meri S, Kovanen PT. Evidence for complement activation in ruptured coronary plaques in acute myocardial infarction. Am J Cardiol. 2002;90:404–8.

    CAS  PubMed  Google Scholar 

  18. Seifert PS, Hugo F, Hansson GK, Bhakdi S. Prelesional complement activation in experimental atherosclerosis. Terminal c5b-9 complement deposition coincides with cholesterol accumulation in the aortic intima of hypercholesterolemic rabbits. Lab Invest. 1989;60:747–54.

    CAS  PubMed  Google Scholar 

  19. Vlaicu R, Niculescu F, Rus HG, Cristea A. Immunohistochemical localization of the terminal c5b-9 complement complex in human aortic fibrous plaque. Atherosclerosis. 1985;57:163–77.

    CAS  PubMed  Google Scholar 

  20. Niculescu F, Rus HG, Vlaicu R. Immunohistochemical localization of c5b-9, s-protein, c3d and apolipoprotein b in human arterial tissues with atherosclerosis. Atherosclerosis. 1987;65:1–11.

    CAS  PubMed  Google Scholar 

  21. Torzewski M, Klouche M, Hock J, Messner M, Dorweiler B, Torzewski J, Gabbert HE, Bhakdi S. Immunohistochemical demonstration of enzymatically modified human ldl and its colocalization with the terminal complement complex in the early atherosclerotic lesion. Arterioscler Thromb Vasc Biol. 1998;18:369–78.

    CAS  PubMed  Google Scholar 

  22. Vlaicu R, Rus HG, Niculescu F, Cristea A. Quantitative determinations of immunoglobulins and complement components in human aortic atherosclerotic wall. Med Interne. 1985;23:29–35.

    CAS  PubMed  Google Scholar 

  23. Niculescu F, Rus H. The role of complement activation in atherosclerosis. Immunol Res. 2004;30:73–80.

    CAS  PubMed  Google Scholar 

  24. Yasojima K, Schwab C, McGeer EG, McGeer PL. Complement components, but not complement inhibitors, are upregulated in atherosclerotic plaques. Arterioscler Thromb Vasc Biol. 2001;21:1214–9.

    CAS  PubMed  Google Scholar 

  25. Verschoor A, Brockman MA, Knipe DM, Carroll MC. Cutting edge: myeloid complement c3 enhances the humoral response to peripheral viral infection. J Immunol. 2001;167:2446–51.

    CAS  PubMed  Google Scholar 

  26. Verschoor A, Brockman MA, Gadjeva M, Knipe DM, Carroll MC. Myeloid c3 determines induction of humoral responses to peripheral herpes simplex virus infection. J Immunol. 2003;171:5363–71.

    CAS  PubMed  Google Scholar 

  27. Gadjeva M, Verschoor A, Brockman MA, Jezak H, Shen LM, Knipe DM, Carroll MC. Macrophage-derived complement component c4 can restore humoral immunity in c4-deficient mice. J Immunol. 2002;169:5489–95.

    CAS  PubMed  Google Scholar 

  28. Li K, Sacks SH, Zhou W. The relative importance of local and systemic complement production in ischaemia, transplantation and other pathologies. Mol Immunol. 2007;44:3866–74.

    CAS  PubMed  Google Scholar 

  29. Oksjoki R, Jarva H, Kovanen PT, Laine P, Meri S, Pentikainen MO. Association between complement factor h and proteoglycans in early human coronary atherosclerotic lesions: implications for local regulation of complement activation. Arterioscler Thromb Vasc Biol. 2003;23:630–6.

    CAS  PubMed  Google Scholar 

  30. Oksjoki R, Kovanen PT, Mayranpaa MI, Laine P, Blom AM, Meri S, Pentikainen MO. Complement regulation in human atherosclerotic coronary lesions. Immunohistochemical evidence that c4b-binding protein negatively regulates the classical complement pathway, and that c5b-9 is formed via the alternative complement pathway. Atherosclerosis. 2007;192:40–8.

    CAS  PubMed  Google Scholar 

  31. Peerschke EI, Minta JO, Zhou SZ, Bini A, Gotlieb A, Colman RW, Ghebrehiwet B. Expression of gc1q-r/p33 and its major ligands in human atherosclerotic lesions. Mol Immunol. 2004;41:759–66.

    CAS  PubMed  Google Scholar 

  32. Speidl WS, Kastl SP, Hutter R, Katsaros KM, Kaun C, Bauriedel G, Maurer G, Huber K, Badimon JJ, Wojta J. The complement component c5a is present in human coronary lesions in vivo and induces the expression of mmp-1 and mmp-9 in human macrophages in vitro. FASEB J. 2011;25:35–44.

    CAS  PubMed  Google Scholar 

  33. Muscari A, Bozzoli C, Gerratana C, Zaca F, Rovinetti C, Zauli D, La Placa M, Puddu P. Association of serum iga and c4 with severe atherosclerosis. Atherosclerosis. 1988;74:179–86.

    CAS  PubMed  Google Scholar 

  34. Geertinger P, Sorensen H. Complement as a factor in arteriosclerosis. Acta Pathol Microbiol Scand A Pathol. 1970;78:284–8.

    CAS  Google Scholar 

  35. Shagdarsuren E, Bidzhekov K, Mause SF, Simsekyilmaz S, Polakowski T, Hawlisch H, Gessner JE, Zernecke A, Weber C. C5a receptor targeting in neointima formation after arterial injury in atherosclerosis-prone mice. Circulation. 2010;122:1026–36.

    CAS  PubMed  Google Scholar 

  36. Manthey HD, Thomas AC, Shiels IA, Zernecke A, Woodruff TM, Rolfe B, Taylor SM. Complement c5a inhibition reduces atherosclerosis in apoe-/- mice. FASEB J. 2011;25:2447–55.

    CAS  PubMed  Google Scholar 

  37. Bhatia VK, Yun S, Leung V, Grimsditch DC, Benson GM, Botto MB, Boyle JJ, Haskard DO. Complement c1q reduces early atherosclerosis in low-density lipoprotein receptor-deficient mice. Am J Pathol. 2007;170:416–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lewis MJ, Malik TH, Ehrenstein MR, Boyle JJ, Botto M, Haskard DO. Immunoglobulin m is required for protection against atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation. 2009;120:417–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Buono C, Come CE, Witztum JL, Maguire GF, Connelly PW, Carroll M, Lichtman AH. Influence of c3 deficiency on atherosclerosis. Circulation. 2002;105:3025–31.

    CAS  PubMed  Google Scholar 

  40. Persson L, Boren J, Robertson AK, Wallenius V, Hansson GK, Pekna M. Lack of complement factor c3, but not factor b, increases hyperlipidemia and atherosclerosis in apolipoprotein e-/- low-density lipoprotein receptor-/- mice. Arterioscler Thromb Vascu Biol. 2004;24:1062–7.

    CAS  Google Scholar 

  41. Granger CB, Mahaffey KW, Weaver WD, Theroux P, Hochman JS, Filloon TG, Rollins S, Todaro TG, Nicolau JC, Ruzyllo W, Armstrong PW, Investigators C. Pexelizumab, an anti-c5 complement antibody, as adjunctive therapy to primary percutaneous coronary intervention in acute myocardial infarction: the complement inhibition in myocardial infarction treated with angioplasty (comma) trial. Circulation. 2003;108:1184–90.

    CAS  PubMed  Google Scholar 

  42. Testa L, Meco M, Cirri S, Bedogni F. Pexelizumab and survival in cardiac surgery. HSR Proc Intensive Care Cardiovasc Anesth. 2011;3:23–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gawaz M, Langer H, May AE. Platelets in inflammation and atherogenesis. J Clin Invest. 2005;115:3378–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Huo Y, Schober A, Forlow SB, Smith DF, Hyman MC, Jung S, Littman DR, Weber C, Ley K. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein e. Nat Med. 2003;9:61–7.

    CAS  PubMed  Google Scholar 

  45. Shpilberg O, Rabi I, Schiller K, Walden R, Harats D, Tyrrell KS, Coller B, Seligsohn U. Patients with glanzmann thrombasthenia lacking platelet glycoprotein alpha(iib)beta(3) (gpiib/iiia) and alpha(v)beta(3) receptors are not protected from atherosclerosis. Circulation. 2002;105:1044–8.

    CAS  PubMed  Google Scholar 

  46. Strassel C, Hechler B, Bull A, Gachet C, Lanza F. Studies of mice lacking the gpib-v-ix complex question the role of this receptor in atherosclerosis. J Thromb Haemost. 2009;7:1935–8.

    CAS  PubMed  Google Scholar 

  47. Schulz C, Schafer A, Stolla M, Kerstan S, Lorenz M, von Bruhl ML, Schiemann M, Bauersachs J, Gloe T, Busch DH, Gawaz M, Massberg S. Chemokine fractalkine mediates leukocyte recruitment to inflammatory endothelial cells in flowing whole blood: a critical role for p-selectin expressed on activated platelets. Circulation. 2007;116:764–73.

    CAS  PubMed  Google Scholar 

  48. Patzelt J, Verschoor A, Langer HF. Platelets and the complement cascade in atherosclerosis. Front Physiol. 2015;6:49.

    PubMed  PubMed Central  Google Scholar 

  49. Koyama H, Maeno T, Fukumoto S, Shoji T, Yamane T, Yokoyama H, Emoto M, Shoji T, Tahara H, Inaba M, Hino M, Shioi A, Miki T, Nishizawa Y. Platelet p-selectin expression is associated with atherosclerotic wall thickness in carotid artery in humans. Circulation. 2003;108:524–9.

    CAS  PubMed  Google Scholar 

  50. Burger PC, Wagner DD. Platelet p-selectin facilitates atherosclerotic lesion development. Blood. 2003;101:2661–6.

    CAS  PubMed  Google Scholar 

  51. Santoso S, Sachs UJ, Kroll H, Linder M, Ruf A, Preissner KT, Chavakis T. The junctional adhesion molecule 3 (jam-3) on human platelets is a counterreceptor for the leukocyte integrin mac-1. J Exp Med. 2002;196:679–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Schober A, Manka D, von Hundelshausen P, Huo Y, Hanrath P, Sarembock IJ, Ley K, Weber C. Deposition of platelet rantes triggering monocyte recruitment requires p-selectin and is involved in neointima formation after arterial injury. Circulation. 2002;106:1523–9.

    CAS  PubMed  Google Scholar 

  53. Langer HF, Daub K, Braun G, Schonberger T, May AE, Schaller M, Stein GM, Stellos K, Bueltmann A, Siegel-Axel D, Wendel HP, Aebert H, Roecken M, Seizer P, Santoso S, Wesselborg S, Brossart P, Gawaz M. Platelets recruit human dendritic cells via mac-1/jam-c interaction and modulate dendritic cell function in vitro. Arterioscler Thromb Vasc Biol. 2007;27:1463–70.

    CAS  PubMed  Google Scholar 

  54. Langer HF, Choi EY, Zhou H, Schleicher R, Chung KJ, Tang Z, Gobel K, Bdeir K, Chatzigeorgiou A, Wong C, Bhatia S, Kruhlak MJ, Rose JW, Burns JB, Hill KE, Qu H, Zhang Y, Lehrmann E, Becker KG, Wang Y, Simon DI, Nieswandt B, Lambris JD, Li X, Meuth SG, Kubes P, Chavakis T. Platelets contribute to the pathogenesis of experimental autoimmune encephalomyelitis. Circ Res. 2012;110:1202–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7:678–89.

    CAS  PubMed  Google Scholar 

  56. Langer HF, Chavakis T. Leukocyte-endothelial interactions in inflammation. J Cell Mol Med. 2009;13:1211–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wagner DD, Frenette PS. The vessel wall and its interactions. Blood. 2008;111:5271–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. von Hundelshausen P, Koenen RR, Weber C. Platelet-mediated enhancement of leukocyte adhesion. Microcirculation. 2009;16:84–96.

    Google Scholar 

  59. van Gils JM, Zwaginga JJ, Hordijk PL. Molecular and functional interactions among monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases. J Leukoc Biol. 2009;85:195–204.

    PubMed  Google Scholar 

  60. Totani L, Evangelista V. Platelet-leukocyte interactions in cardiovascular disease and beyond. Arterioscler Thromb Vasc Biol. 2010;30:2357–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. von Hundelshausen P, Weber C. Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res. 2007;100:27–40.

    Google Scholar 

  62. Inoue O, Suzuki-Inoue K, Dean WL, Frampton J, Watson SP. Integrin alpha2beta1 mediates outside-in regulation of platelet spreading on collagen through activation of src kinases and plcgamma2. J Cell Biol. 2003;160:769–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bombeli T, Schwartz BR, Harlan JM. Adhesion of activated platelets to endothelial cells: Evidence for a gpiibiiia-dependent bridging mechanism and novel roles for endothelial intercellular adhesion molecule 1 (icam-1), alphavbeta3 integrin, and gpibalpha. J Exp Med. 1998;187:329–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Gruner S, Prostredna M, Schulte V, Krieg T, Eckes B, Brakebusch C, Nieswandt B. Multiple integrin-ligand interactions synergize in shear-resistant platelet adhesion at sites of arterial injury in vivo. Blood. 2003;102:4021–7.

    PubMed  Google Scholar 

  65. Gawaz M, Neumann FJ, Dickfeld T, Reininger A, Adelsberger H, Gebhardt A, Schomig A. Vitronectin receptor (alpha(v)beta3) mediates platelet adhesion to the luminal aspect of endothelial cells: Implications for reperfusion in acute myocardial infarction. Circulation. 1997;96:1809–18.

    CAS  PubMed  Google Scholar 

  66. Weber C, Springer TA. Neutrophil accumulation on activated, surface-adherent platelets in flow is mediated by interaction of mac-1 with fibrinogen bound to alphaiibbeta3 and stimulated by platelet-activating factor. J Clin Invest. 1997;100:2085–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Massberg S, Gawaz M, Gruner S, Schulte V, Konrad I, Zohlnhofer D, Heinzmann U, Nieswandt B. A crucial role of glycoprotein vi for platelet recruitment to the injured arterial wall in vivo. J Exp Med. 2003;197:41–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Weber KS, Alon R, Klickstein LB. Sialylation of icam-2 on platelets impairs adhesion of leukocytes via lfa-1 and dc-sign. Inflammation. 2004;28:177–88.

    CAS  PubMed  Google Scholar 

  69. Karshovska E, Zhao Z, Blanchet X, Schmitt MM, Bidzhekov K, Soehnlein O, von Hundelshausen P, Mattheij NJ, Cosemans JM, Megens RT, Koeppel TA, Schober A, Hackeng TM, Weber C, Koenen RR. Hyperreactivity of junctional adhesion molecule a-deficient platelets accelerates atherosclerosis in hyperlipidemic mice. Circ Res. 2015;116:587–99.

    CAS  PubMed  Google Scholar 

  70. Dole VS, Bergmeier W, Patten IS, Hirahashi J, Mayadas TN, Wagner DD. Psgl-1 regulates platelet p-selectin-mediated endothelial activation and shedding of p-selectin from activated platelets. Thromb Haemost. 2007;98:806–12.

    CAS  PubMed  Google Scholar 

  71. Frenette PS, Denis CV, Weiss L, Jurk K, Subbarao S, Kehrel B, Hartwig JH, Vestweber D, Wagner DD. P-selectin glycoprotein ligand 1 (psgl-1) is expressed on platelets and can mediate platelet-endothelial interactions in vivo. J Exp Med. 2000;191:1413–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Langer HF, Gawaz M. Platelet-vessel wall interactions in atherosclerotic disease. Thromb Haemost. 2008;99:480–6.

    CAS  PubMed  Google Scholar 

  73. von Hundelshausen P, Schmitt MM. Platelets and their chemokines in atherosclerosis-clinical applications. Front Physiol. 2014;5:294.

    Google Scholar 

  74. Siegel-Axel D, Daub K, Seizer P, Lindemann S, Gawaz M. Platelet lipoprotein interplay: trigger of foam cell formation and driver of atherosclerosis. Cardiovasc Res. 2008;78:8–17.

    CAS  PubMed  Google Scholar 

  75. Stellos K, Sauter R, Fahrleitner M, Grimm J, Stakos D, Emschermann F, Panagiota V, Gnerlich S, Perk A, Schonberger T, Bigalke B, Langer HF, Gawaz M. Binding of oxidized low-density lipoprotein on circulating platelets is increased in patients with acute coronary syndromes and induces platelet adhesion to vascular wall in vivo—brief report. Arterioscler Thromb Vasc Biol. 2012;32:2017–20.

    CAS  PubMed  Google Scholar 

  76. Cipollone F, Mezzetti A, Porreca E, Di Febbo C, Nutini M, Fazia M, Falco A, Cuccurullo F, Davi G. Association between enhanced soluble cd40l and prothrombotic state in hypercholesterolemia: Effects of statin therapy. Circulation. 2002;106:399–402.

    CAS  PubMed  Google Scholar 

  77. Ferroni P, Basili S, Santilli F, Davi G. Low-density lipoprotein-lowering medication and platelet function. Pathophysiol Haemost Thromb. 2006;35:346–54.

    CAS  PubMed  Google Scholar 

  78. Hamad OA, Nilsson PH, Wouters D, Lambris JD, Ekdahl KN, Nilsson B. Complement component c3 binds to activated normal platelets without preceding proteolytic activation and promotes binding to complement receptor 1. J Immunol. 2010;184:2686–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hamad OA, Ekdahl KN, Nilsson PH, Andersson J, Magotti P, Lambris JD, Nilsson B. Complement activation triggered by chondroitin sulfate released by thrombin receptor-activated platelets. J Thromb Haemost. 2008;6:1413–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Vik DP, Fearon DT. Cellular distribution of complement receptor type 4 (cr4): Expression on human platelets. J Immunol. 1987;138:254–8.

    CAS  PubMed  Google Scholar 

  81. Wautier JL, Souchon H, Reid KB, Peltier AP, Caen JP. Studies on the mode of reaction of the first component of complement with platelets: Interaction between the collagen-like portion of c1q and platelets. Immunochemistry. 1977;14:763–6.

    CAS  PubMed  Google Scholar 

  82. Peerschke EI, Ghebrehiwet B. C1q augments platelet activation in response to aggregated ig. J Immunol. 1997;159:5594–8.

    CAS  PubMed  Google Scholar 

  83. Peerschke EI, Ghebrehiwet B. Human blood platelet gc1qr/p33. Immunol Rev. 2001;180:56–64.

    CAS  PubMed  Google Scholar 

  84. Polley MJ, Nachman RL. Human platelet activation by c3a and c3a des-arg. J Exp Med. 1983;158:603–15.

    CAS  PubMed  Google Scholar 

  85. Martel C, Cointe S, Maurice P, Matar S, Ghitescu M, Theroux P, Bonnefoy A. Requirements for membrane attack complex formation and anaphylatoxins binding to collagen-activated platelets. PloS One. 2011;6:e18812.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Patzelt J, Mueller KA, Breuning S, Karathanos A, Schleicher R, Seizer P, Gawaz M, Langer HF, Geisler T. Expression of anaphylatoxin receptors on platelets in patients with coronary heart disease. Atherosclerosis. 2014;238:289–95.

    PubMed  Google Scholar 

  87. Langer H, Verschoor A. Crosstalk between platelets and the complement system in immune protection and disease. Thromb Haemost. 2013;110:910–9.

    PubMed  Google Scholar 

  88. Stahl AL, Vaziri-Sani F, Heinen S, Kristoffersson AC, Gydell KH, Raafat R, Gutierrez A, Beringer O, Zipfel PF, Karpman D. Factor h dysfunction in patients with atypical hemolytic uremic syndrome contributes to complement deposition on platelets and their activation. Blood. 2008;111:5307–15.

    PubMed  Google Scholar 

  89. Nicholson-Weller A, Burge J, Fearon DT, Weller PF, Austen KF. Isolation of a human erythrocyte membrane glycoprotein with decay-accelerating activity for c3 convertases of the complement system. J Immunol. 1982;129:184–9.

    CAS  PubMed  Google Scholar 

  90. Thomas TC, Rollins SA, Rother RP, Giannoni MA, Hartman SL, Elliott EA, Nye SH, Matis LA, Squinto SP, Evans MJ. Inhibition of complement activity by humanized anti-c5 antibody and single-chain fv. Mol Immunol. 1996;33:1389–401.

    CAS  PubMed  Google Scholar 

  91. Del Conde I, Cruz MA, Zhang H, Lopez JA, Afshar-Kharghan V. Platelet activation leads to activation and propagation of the complement system. J Exp Med. 2005;201:871–9.

    PubMed  PubMed Central  Google Scholar 

  92. Verschoor A, Neuenhahn M, Navarini AA, Graef P, Plaumann A, Seidlmeier A, Nieswandt B, Massberg S, Zinkernagel RM, Hengartner H, Busch DH. A platelet-mediated system for shuttling blood-borne bacteria to cd8alpha+ dendritic cells depends on glycoprotein gpib and complement c3. Nat Immunol. 2011;12:1194–201.

    CAS  PubMed  Google Scholar 

  93. Sims PJ, Wiedmer T. The response of human platelets to activated components of the complement system. Immunol Today. 1991;12:338–42.

    CAS  PubMed  Google Scholar 

  94. Strassel C, Nonne C, Eckly A, David T, Leon C, Freund M, Cazenave JP, Gachet C, Lanza F. Decreased thrombotic tendency in mouse models of the bernard-soulier syndrome. Arterioscler Thromb Vasc Biol. 2007;27:241–7.

    CAS  PubMed  Google Scholar 

  95. Gushiken FC, Han H, Li J, Rumbaut RE, Afshar-Kharghan V. Abnormal platelet function in c3-deficient mice. J Thromb Haemost. 2009;7:865–70.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald F. Langer .

Editor information

Editors and Affiliations

Compliance with Ethical Standards

Compliance with Ethical Standards

  • Conflict of Interest: Johannes Patzelt and Harald F. Langer declares that they have no conflict of interest.

  • Ethical Approval: This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patzelt, J., Langer, H.F. (2017). Platelets and Innate Immunity in Atherosclerosis. In: Zirlik, A., Bode, C., Gawaz, M. (eds) Platelets, Haemostasis and Inflammation. Cardiac and Vascular Biology, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-66224-4_13

Download citation

Publish with us

Policies and ethics