Skip to main content

Learning About Statistical Inference

  • Chapter
  • First Online:
International Handbook of Research in Statistics Education

Part of the book series: Springer International Handbooks of Education ((SIHE))

Abstract

This chapter reviews research on the learning of statistical inference, focusing in particular on recent research on informal statistical inference. The chapter begins by arguing for the importance of broader access to the power of statistical inference—which, until recently, has been accessible only to those with extensive knowledge of mathematics—and then traces the philosophical roots of inference. We outline the challenges that students have encountered in learning statistical inference and strategies to facilitate its learning that have capitalized on technological advances. We describe the emergence of informal statistical inference and how researchers have framed the idea over the past decade. Rather than consider formal and informal statistical inference dichotomously, we highlight a number of dimensions along which approaches to statistical inference may differ, providing a richer perspective on how formal and informal statistical inference are related. Cases from classroom research aimed at primary, secondary, and tertiary levels are used to illustrate how informal statistical inference has shaped new ways to approach the teaching and learning of statistical inference. Finally, we outline gaps in research on statistical inference and present our speculations on its future in light of new research on statistical modeling and big data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ainley, J., & Pratt, D. (2001). Introducing a special issue on constructing meanings from data. Educational Studies in Mathematics, 45(1), 1–8.

    Article  Google Scholar 

  • Aridor, K., & Ben-Zvi, D. (in press). Students’ aggregate reasoning with covariation. In G. Burrill & D. Ben-Zvi (Eds.), Topics and trends in current statistics education research: International perspectives. New York: Springer.

    Google Scholar 

  • Australian Academy of Science. (2006). Mathematics and statistics: Critical skills for Australia's future. The national strategic review of mathematical sciences research in Australia. Melbourne: University of Melbourne. Retrieved from http://www.review.ms.unimelb.edu.au/FullReport2006.pdf

    Google Scholar 

  • Australian Curriculum, Assessment and Reporting Authority. (2012). Australian curriculum: Mathematics. Melbourne: ACARA.

    Google Scholar 

  • Bakker, A., & Derry, J. (2011). Lessons from inferentialism for statistics education. Mathematical Thinking and Learning, 13(1–2), 5–26.

    Article  Google Scholar 

  • Bakker, A., & Gravemeijer, K. (2004). Learning to reason about distribution. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning, and thinking (pp. 147–168). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Bakker, A., Kent, P., Derry, J., Noss, R., & Hoyles, C. (2008). Statistical inference at work: Statistical process control as an example. Statistics Education Research Journal, 7(2), 130–145.

    Google Scholar 

  • Belia, S., Fidler, F., Williams, J., & Cumming, G. (2005). Researchers misunderstand confidence intervals and standard error bars. Psychological Methods, 10(4), 389–396.

    Article  Google Scholar 

  • Ben-Zvi, D. (2006). Scaffolding students' informal inference and argumentation. In A. Rossman & B. Chance (Eds.), Proceedings of the Seventh International Conference on Teaching Statistics. International Association for Statistics Education: Voorburg, The Netherlands.

    Google Scholar 

  • Ben-Zvi, D., & Arcavi, A. (2001). Junior high school students’ construction of global views of data and data representations. Educational Studies in Mathematics, 45(1), 35–65.

    Article  Google Scholar 

  • Ben-Zvi, D., Aridor, K., Makar, K., & Bakker, A. (2012). Students’ emergent articulations of uncertainty while making informal statistical inferences. ZDM, 44(7), 913–925.

    Article  Google Scholar 

  • Biehler, R., Ben-Zvi, D., Bakker, A., & Makar, K. (2013). Technology for enhancing statistical reasoning at the school level. In M. A. Clements, A. J. Bishop, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), Third international handbook of mathematics education (pp. 643–689). New York: Springer.

    Google Scholar 

  • Budgett, S., Pfannkuch, M., Regan, M., & Wild, C. J. (2013). Dynamic visualizations and the randomization test. Technology Innovations in Statistics Education, 7(2), 1–21. Retrieved from http://escholarship.org/uc/item/9dg6h7wb

    Google Scholar 

  • Budgett, S., & Wild, C. J. (2014). Students’ visual reasoning and the randomization test. In K. Makar, B. da Sousa, & R. Gould (Eds.), Proceedings of the Ninth International Conference on Teaching Statistics. Voorburg, The Netherlands: IASE.

    Google Scholar 

  • Castro-Sotos, A. E. C., Vanhoof, S., Van den Noortgate, W., & Onghena, P. (2007). Students’ misconceptions of statistical inference: A review of the empirical evidence from research on statistics education. Educational Research Review, 2(2), 98–113.

    Article  Google Scholar 

  • Chance, B., delMas, R., & Garfield, J. (2004). Reasoning about sampling distributions. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning, and thinking (pp. 295–323). Dordrecht, The Netherlands: Kluwer.

    Chapter  Google Scholar 

  • Cobb, G. W. (2007). The introductory statistics course: A Ptolemaic curriculum? Technology Innovations in Statistics Education, 1(1), Article 1. Retrieved from http://escholarship.org/uc/item/6hb3k0nz

    Google Scholar 

  • Cobb, G. W., & Moore, D. S. (1997). Mathematics, statistics, and teaching. The American Mathematical Monthly, 104(9), 801–823.

    Article  Google Scholar 

  • Cobb, P., McClain, K., & Gravemeijer, K. (2003). Learning about statistical covariation. Cognition and Instruction, 21(1), 1–78.

    Article  Google Scholar 

  • Council for the Mathematical Sciences. (2004). An international review of UK research in mathematics. London: Author.

    Google Scholar 

  • Cumming, G. (2012). Understanding the new statistics: Effect sizes, confidence intervals, and meta-analysis. New York: Routledge.

    Google Scholar 

  • delMas, R. (2004). A comparison of mathematical and statistical reasoning. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning, and thinking (pp. 79–95). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • delMas, R., Garfield, J., & Chance, B. (1999). A model of classroom research in action: Developing simulation activities to improve students’ statistical reasoning. Journal of Statistics Education, 7(3).

    Google Scholar 

  • delMas, R., Garfield, J., Ooms, A., & Chance, B. (2007). Assessing students’ conceptual understanding after a first course in statistics. Statistics Education Research Journal, 6(2), 25–58.

    Google Scholar 

  • delMas, R., Garfield, J., & Zieffler, A. (2014). Using TinkerPlots™ to develop tertiary students’ statistical thinking in a modeling-based introductory statistics class. In T. Wassong, D. Frischemeier, P. R. Fischer, R. Hochmuth, & P. Bender (Eds.), Mit Werkzeugen, Mathematik und Stochastik lernen—Using tools for learning mathematics and statistics (pp. 405–420). Wiesbaden, Germany: Springer Spektrum.

    Chapter  Google Scholar 

  • Dewey, J. (1910/1997). How we think. Mineola, NY: Dover.

    Book  Google Scholar 

  • Dierdorp, A., Bakker, A., Eijkelhof, H., & van Maanen, J. (2011). Authentic practices as contexts for learning to draw inferences beyond correlated data. Mathematical Thinking and Learning, 13(1), 132–151.

    Article  Google Scholar 

  • English, L. D. (2012). Data modelling with first-grade students. Educational Studies in Mathematics, 81(1), 15–30.

    Article  Google Scholar 

  • Falk, R., & Greenbaum, C. W. (1995). Significance tests die hard. Theory and Psychology, 5(1), 75–98.

    Article  Google Scholar 

  • Fielding-Wells, J. (2010). Linking problems, conclusions and evidence: Primary students’ early experiences of planning statistical investigations. In C. Reading (Ed.), Proceedings of the Eighth International Conference on Teaching Statistics. International Statistical Institute: Voorburg, The Netherlands.

    Google Scholar 

  • Fielding-Wells, J., & Makar, K. (2015). Inferring to a model: Using inquiry-based argumentation to challenge young children’s expectations of equally likely outcomes. In A. Zieffler & E. Fry (Eds.), Reasoning about uncertainty: Learning and teaching informal inferential reasoning (pp. 89–115). Minneapolis: Catalyst Press.

    Google Scholar 

  • Frick, R. W. (1998). Interpreting statistical testing: Process and propensity, not population and random sampling. Behavior Research Methods, Instruments, & Computers, 30(3), 527–535.

    Article  Google Scholar 

  • Garfield, J., & Ben-Zvi, D. (2008). Developing students’ statistical reasoning: Connecting research and teaching. New York: Springer.

    Google Scholar 

  • Garfield, J., delMas, R., & Zieffler, A. (2012). Developing statistical modelers and thinkers in an introductory, tertiary-level statistics course. ZDM, 44(7), 883–898.

    Article  Google Scholar 

  • Garfield, J., Le, L., Zieffler, A., & Ben-Zvi, D. (2015). Developing students’ reasoning about samples and sampling variability as a path to expert statistical thinking. Educational Studies in Mathematics, 88(3), 327–342.

    Article  Google Scholar 

  • Gil, E., & Ben-Zvi, D. (2011). Explanations and context in the emergence of students’ informal inferential reasoning. Mathematical Thinking and Learning, 13(1), 87–108.

    Article  Google Scholar 

  • Groth, R. (2015). Working at the boundaries of mathematics education and statistics education communities of practice. Journal for Research in Mathematics Education, 46(1), 4–16.

    Article  Google Scholar 

  • Hacking, I. (2006). The emergence of probability: A philosophical study of early ideas about probability, induction and statistical inference. Cambridge UK: Cambridge University Press.

    Book  Google Scholar 

  • Hancock, C., Kaput, J. J., & Goldsmith, L. T. (1992). Authentic inquiry with data: Critical barriers to classroom implementation. Educational Psychologist, 27(3), 337–364.

    Article  Google Scholar 

  • Harlow, L. L. E., Mulaik, S. A., & Steiger, J. H. (Eds.). (1997). What if there were no significance tests? Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Harradine, A., Batanero, C., & Rossman, A. (2011). Students and teachers’ knowledge of sampling and inference. In C. Batanero, G. Burrill, & C. Reading (Eds.), Teaching statistics in school mathematics: Challenges for teaching and teacher education (A Joint ICMI/IASE Study) (pp. 235–246). New York: Springer.

    Chapter  Google Scholar 

  • Hesterberg, T., Moore, D., Monaghan, S., Clipson, A., & Epstein, R. (2009). Bootstrap methods and permutation tests. In D. Moore, G. McCabe, & B. Craig (Eds.), Introduction to the practice of statistics (6th ed., pp. 16-1–16-60). New York, NY: Freeman.

    Google Scholar 

  • Kahneman, D., Slovic, S., & Tversky, A. (1982). Judgment under uncertainty: Heuristics and biases. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Konold, C. (1994). Teaching probability through modeling real problems. Mathematics Teacher, 87(4), 232–235.

    Google Scholar 

  • Konold, C. (2005). Exploring data with TinkerPlots. Emeryville, CA: Key Curriculum Press.

    Google Scholar 

  • Konold, C. (2007). Designing a data analysis tool for learners. In M. C. Lovett & P. Shah (Eds.), Thinking with data (pp. 267–291). New York: Lawrence Erlbaum Associates.

    Google Scholar 

  • Konold, C., Harradine, A., & Kazak, S. (2007). Understanding distributions by modeling them. International Journal of Computers for Mathematical Learning, 12(3), 217–230.

    Article  Google Scholar 

  • Konold, C., Higgins, T., Russell, S. J., & Khalil, K. (2015). Data seen through different lenses. Educational Studies in Mathematics, 88(3), 305–325.

    Article  Google Scholar 

  • Konold, C., & Miller, C. D. (2005). TinkerPlots: Dynamic data exploration. Emeryville, CA: Key Curriculum Press.

    Google Scholar 

  • Konold, C., & Pollatsek, A. (2002). Data analysis as the search for signals in noisy processes. Journal for Research in Mathematics Education, 33(4), 259–289.

    Article  Google Scholar 

  • Langrall, C., Nisbet, S., Mooney, E., & Jansem, S. (2011). The role of context expertise when comparing data. Mathematical Thinking and Learning, 13(1), 47–67.

    Article  Google Scholar 

  • Lecoutre, M.-P., Durand, J.-L., & Cordier, J. (1990). A study of two biases in probabilistic judgments: Representativeness and equiprobability. In J.-P. Caverni, J.-M. Fabre, & M. Gonzalez (Eds.), Cognitive biases (pp. 563–575). Amsterdam: Elsevier.

    Google Scholar 

  • Lehrer, R., & Schauble, L. (2000). Modeling in mathematics and science. In R. Glaser (Ed.), Advances in instructional psychology: Educational design and cognitive science (Vol. 5, pp. 101–105). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Lehrer, R., & Schauble, L. (2004). Modeling natural variation through distribution. American Educational Research Journal, 41(3), 635–679.

    Article  Google Scholar 

  • Lock, R. H., Lock, P. F., & Morgan, K. L. (2012). Statistics: Unlocking the power of data. Wiley Global Education.

    Google Scholar 

  • Madden, S. R. (2011). Statistically, technologically, and contextually provocative tasks: Supporting teachers' informal inferential reasoning. Mathematical Thinking and Learning, 13(1), 109–131.

    Article  Google Scholar 

  • Makar, K. (2014). Young children’s explorations of average through informal inferential reasoning. Educational Studies in Mathematics, 86(1), 61–78.

    Article  Google Scholar 

  • Makar, K. (2016). Developing young children’s emergent inferential practices in statistics. Mathematical Thinking and Learning, 18(1), 1–24.

    Article  Google Scholar 

  • Makar, K., Bakker, A., & Ben-Zvi, D. (2011). The reasoning behind informal statistical inference. Mathematical Thinking and Learning, 13(1–2), 152–173.

    Article  Google Scholar 

  • Makar, K., & Rubin, A. (2009). A framework for thinking about informal statistical inference. Statistics Education Research Journal, 8(1), 82–105.

    Google Scholar 

  • Meletiou-Mavrotheris, M., & Paparistodemou, E. (2015). Developing students’ reasoning about samples and sampling in the context of informal inferences. Educational Studies in Mathematics, 88(3), 385–404.

    Article  Google Scholar 

  • Moore, D. (1990). Uncertainty. In L. A. Steen (Ed.), On the shoulders of giants: New approaches to numeracy (pp. 95–137). Washington, DC: National Academy Press.

    Google Scholar 

  • Mulligan, J., & Mitchelmore, M. (2013). Early awareness of mathematical pattern and structure. In L. English & J. Mulligan (Eds.), Reconceptualizing early mathematics learning (pp. 29–45). New York, NY: Springer.

    Chapter  Google Scholar 

  • New Zealand Ministry of Education. (2016). Elaborations on level 5: Statistics. NZMaths. Retrieved from http://nzmaths.co.nz/elaborations-level-five-statistics.

  • Nickerson, R. (2004). Cognition and chance: The psychology of probabilistic reasoning. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Pfannkuch, M. (2006). Informal inferential reasoning. In A. Rossman & B. Chance (Eds.), Proceedings of the Seventh International Conference on Teaching Statistics. Voorburg, the Netherlands: IASE.

    Google Scholar 

  • Pfannkuch, M., & Budgett, S. (2014). Constructing inferential concepts through bootstrap and randomization-test simulations: A case study. In K. Makar, B. da Sousa, & R. Gould (Eds.), Proceedings of the Ninth International Conference on Teaching Statistics. Voorburg, the Netherlands: IASE.

    Google Scholar 

  • Pfannkuch, M., Budgett, S., & Arnold, P. (2015). Experiment-to-Causation inference: Understanding causality in a probabilistic setting. In A. Zieffler & E. Fry (Eds.), Reasoning about uncertainty: Learning and teaching informal inferential reasoning (pp. 95–128). Minneapolis: Catalyst Press.

    Google Scholar 

  • Pfannkuch, M., Wild, C. J., & Regan, M. (2014). Students’ difficulties in practicing computer-supported statistical inference: Some hypothetical generalizations from a study. In T. Wassong, D. Frischemeier, P. Fischer, R. Hochmuth, & P. Bender (Eds.), Mit Werkzeugen Mathematik und Stochastik lernen—Using tools for learning mathematics and statistics (pp. 393–403). Wiesbaden, Germany: Springer Spektrum.

    Chapter  Google Scholar 

  • Pratt, D. (2011). Re-connecting probability and reasoning about data in secondary school teaching. Paper presented at the 58th World Statistics Conference, Dublin.

    Google Scholar 

  • Pratt, D., Johnson-Wilder, P., Ainley, J., & Mason, J. (2008). Local and global thinking in statistical inference. Statistics Education Research Journal, 7(2), 107–129.

    Google Scholar 

  • Prodromou, T., & Pratt, D. (2006). The role of causality in the co-ordination of two perspectives on distribution within a virtual simulation. Statistics Education Research Journal, 5(2), 69–88.

    Google Scholar 

  • Ramsey, F., & Schafer, D. (2013). The statistical sleuth: A course in methods of data analysis (3rd ed.). Boston: Cengage Learning.

    Google Scholar 

  • Reaburn, R. (2014a). Introductory statistics course tertiary students’ understanding of p-values. Statistics Education Research Journal, 13(1), 53–65.

    Google Scholar 

  • Reaburn, R. (2014b). Students’ understanding of confidence intervals. In K. Makar, B. de Sousa, & R. Gould (Eds.), Proceedings of the Ninth International Conference on Teaching Statistics. Voorburg, The Netherlands: IASE.

    Google Scholar 

  • Rossman, A. (2008). Reasoning about informal statistical inference: One statistician’s view. Statistics Education Research Journal, 7(2), 5–19.

    Google Scholar 

  • Rubin, A., Hammerman, J., & Konold, C. (2006). Exploring informal inference with interactive visualization software. In A. Rossman & B. Chance (Eds.), Proceedings of the Seventh International Conference on Teaching Statistics. Voorburg, the Netherlands: IASE.

    Google Scholar 

  • Saldanha, L. A., & Thompson, P. W. (2002). Conceptions of sample and their relationship to statistical inference. Educational Studies in Mathematics, 51(3), 257–270.

    Article  Google Scholar 

  • Shaughnessy, J. M., Garfield, J., & Greer, B. (1996). Data handling. In A. J. Bishop et al. (Eds.), International handbook of mathematics education (pp. 205–237). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Stanovich, K. (2007). How to think straight about psychology (8th ed.). Upper Salle River, NJ: Allyn & Bacon.

    Google Scholar 

  • Tintle, N., Rogers, A., Chance, B., Cobb, G., Rossman, A., Roy, S., et al. (2014). Quantitative evidence for the use of simulation and randomization in the introductory statistics course. In K. Makar, B. da Sousa, & R. Gould (Eds.), Proceedings of the Ninth International Conference on Teaching Statistics. Voorburg, the Netherlands: IASE.

    Google Scholar 

  • Tintle, N., Topliff, K., VanderStoep, J., Holmes, V. L., & Swanson, T. (2012). Retention of statistical concepts in a preliminary randomization-based introductory statistics curriculum. Statistics Education Research Journal, 11(1), 21–40.

    Google Scholar 

  • Tintle, N., VanderStoep, J., Holmes, V.-L., Quisenberry, B., & Swanson, T. (2011). Development and assessment of a preliminary randomization-based introductory statistics curriculum. Journal of Statistics Education, 19(1).

    Google Scholar 

  • Tukey, J. W. (1977). Exploratory data analysis. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Tukey, J. W. (1980). We need both exploratory and confirmatory. The American Statistician, 34(1), 23–25.

    Google Scholar 

  • Wagenmakers, E. (2007). A practical solution to the pervasive problems of p-values. Psychonomic Bulletin and Review, 14(5), 779–804.

    Article  Google Scholar 

  • Wild, C. J., & Pfannkuch, M. (1999). Statistical thinking in empirical enquiry. International Statistical Review, 67(3), 223–248.

    Article  Google Scholar 

  • Wild, C., Pfannkuch, M., Regan, M., & Parsonage, R. (2017). Accessible conceptions of statistical inference: Pulling ourselves up by the bootstraps. International Statistical Review, 85(1), 84–107.

    Article  Google Scholar 

  • Zieffler, A., Garfield, J., delMas, R., & Reading, C. (2008). A framework to support research on informal inferential reasoning. Statistics Education Research Journal, 7(2), 40–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katie Makar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Makar, K., Rubin, A. (2018). Learning About Statistical Inference. In: Ben-Zvi, D., Makar, K., Garfield, J. (eds) International Handbook of Research in Statistics Education. Springer International Handbooks of Education. Springer, Cham. https://doi.org/10.1007/978-3-319-66195-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66195-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66193-3

  • Online ISBN: 978-3-319-66195-7

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics