Skip to main content

Formalization of the Lindemann-Weierstrass Theorem

  • Conference paper
Interactive Theorem Proving (ITP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10499))

Included in the following conference series:

  • 1053 Accesses

Abstract

This article details a formalization in Coq of the Lindemann-Weierstrass theorem which gives a transcendence criterion for complex numbers: this theorem establishes a link between the linear independence of a set of algebraic numbers and the algebraic independence of the exponentials of these numbers. As we follow Baker’s proof, we discuss the difficulties of its formalization and explain how we resolved them in Coq. Most of these difficulties revolve around multivariate polynomials and their relationship with the conjugates of a univariate polynomial. Their study ultimately leads to alternative forms of the fundamental theorem of symmetric polynomials. This formalization uses mainly the Mathcomp library for the part relying on algebra, and the Coquelicot library and the Coq standard library of real numbers for the calculus part.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Formalization of the Lindemann-Weierstrass theorem in Coq. http://www-sop.inria.fr/marelle/lindemann/

  2. Baker, A.: Transcendental Number Theory. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  3. Bernard, S., Bertot, Y., Rideau, L., Strub, P.Y.: Formal proofs of transcendence for e and pi as an application of multivariate and symmetric polynomials. In: Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, pp. 76–87. ACM (2016)

    Google Scholar 

  4. Bingham, J.: Formalizing a proof that e is transcendental. J. Formaliz. Reason. 4(1), 71–84 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Boldo, S., Lelay, C., Melquiond, G.: Coquelicot: a user-friendly library of real analysis for Coq. Math. Comput. Sci. 9(1), 41–62 (2015)

    Article  MathSciNet  Google Scholar 

  6. Cohen, C.: Finmap library. http://github.com/math-comp/finmap

  7. Cohen, C.: Formalized algebraic numbers: construction and first-order theory. Ph.D. thesis, Citeseer (2013)

    Google Scholar 

  8. Coq development team: the Coq proof assistant (2008). http://coq.inria.fr

  9. Gonthier, G.: Formal proof – the four-color theorem. Not. AMS 55(11), 1382–1393 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Gonthier, G., et al.: A machine-checked proof of the odd order theorem. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 163–179. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39634-2_14

    Chapter  Google Scholar 

  11. Hermite, C.: Sur la fonction exponentielle. In: Comptes-Rendus de l’Académie des Sciences, vol. 77, pp. 18–24, 74–79, 226–233, 285–293. Paris (1873)

    Google Scholar 

  12. Lang, S.: Algebra. Graduate Texts in Mathematics, vol. 211, 3rd edn. Springer, New York (2002)

    Book  Google Scholar 

  13. Lindemann, F.: Über die zahl \(\pi \). Math. Ann. 20(2), 213–225 (1882)

    Article  MathSciNet  Google Scholar 

  14. Liouville, J.: Sur des classes très-étendues de quantités dont la valeur n’est ni algébrique, ni même réductible à des irrationnelles algébriques. J. de mathématiques pures et appliquées 16, 133–142 (1851)

    Google Scholar 

  15. Muñoz, C., Narkawicz, A.: Formalization of a representation of Bernstein polynomials and applications to global optimization. J. Autom. Reason. 51(2), 151–196 (2013)

    Article  Google Scholar 

  16. Weierstrass, K.: Zu Lindemann’s Abhandlung: “Über die Ludolph’sche Zahl.”. Akademie der Wissenschaften (1885)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Bernard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bernard, S. (2017). Formalization of the Lindemann-Weierstrass Theorem. In: Ayala-Rincón, M., Muñoz, C.A. (eds) Interactive Theorem Proving. ITP 2017. Lecture Notes in Computer Science(), vol 10499. Springer, Cham. https://doi.org/10.1007/978-3-319-66107-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66107-0_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66106-3

  • Online ISBN: 978-3-319-66107-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics