Skip to main content

Molecular Engineering of Conus Peptides as Therapeutic Leads

  • Chapter
  • First Online:
Peptides and Peptide-based Biomaterials and their Biomedical Applications

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1030))

Abstract

The venom from carnivorous marine snails of the Conus genus is a cocktail of peptides, proteins and small molecules that is used by the snail to capture prey. The peptides within this venom have been the focus of many drug design efforts as they exhibit potent and selective targeting of therapeutically important receptors, transporters and channels, particularly in relation to the treatment of chronic pain. The most well studied class of Conus peptides are the conotoxins, which are disulfide-rich and typically have well-defined three dimensional structures that are important for both biological activity and stability. In this chapter we discuss the molecular engineering approaches that have been used to modify these conotoxins to improve their pharmacological properties, including potency, selectivity, stability, and minimisation of the bioactive pharmacophore. These engineering strategies include sidechain modifications, disulfide substitution and deletion, backbone cyclisation, and truncations. Several of these re-engineered conotoxins have progressed to pre-clinical or clinical studies, which demonstrates the promise of using these molecular engineering techniques for the development of therapeutic leads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akcan M, Clark RJ, Daly NL, Conibear AC, de Faoite A, Heghinian MD, Sahil T, Adams DJ, Marí F, Craik DJ (2015) Transforming conotoxins into cyclotides: backbone cyclization of P-superfamily conotoxins. Pept Sci 104(6):682–692

    Article  CAS  Google Scholar 

  • Akondi KB, Lewis RJ, Alewood PF (2014a) Re-engineering the mu-conotoxin SIIIA scaffold. Biopolymers 101(4):347–354

    Google Scholar 

  • Akondi KB, Muttenthaler M, Dutertre S, Kaas Q, Craik DJ, Lewis RJ, Alewood PF (2014b) Discovery, synthesis, and structure-activity relationships of conotoxins. Chem Rev 114(11):5815–5847

    Google Scholar 

  • Antos JM, Popp MW-L, Ernst R, Chew G-L, Spooner E, Ploegh HL (2009) A straight path to circular proteins. J Biol Chem 284(23):16028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armishaw C, Jensen A, Balle L, Scott K, Sorensen L, Stramgaard K (2011) Improving the stability of alpha-conotoxin AuIB through N-to-C cyclization: the effect of linker length on stability and activity at nicotinic acetylcholine receptors. Antioxid Redox Signal 14(1):65–76

    Article  CAS  PubMed  Google Scholar 

  • Armishaw C, Jensen A, Balle T, Clark R, Harpsoe K, Skonberg C, Liljefors T, Stromgaard K (2009) Rational design of alpha-Conotoxin analogues targeting alpha7 nicotinic acetylcholine receptors: improved antagonistic activity by incorporation of proline derivatives. J Biol Chem 284(14):9498–9512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armishaw CJ (2010) Synthetic alpha-conotoxin mutants as probes for studying nicotinic acetylcholine receptors and in the development of novel drug leads. Toxins 2(6):1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armishaw CJ, Daly N, Nevin S, Adams D, Craik D, Alewood P (2006) Alpha-selenoconotoxins, a new class of potent alpha7 neuronal nicotinic receptor antagonists. J Biol Chem 281(20):14136–14143

    Article  CAS  PubMed  Google Scholar 

  • Armishaw CJ, Dutton JL, Craik DJ, Alewood PF (2010) Establishing regiocontrol of disulfide bond isomers of alpha-conotoxin ImI via the synthesis of N-to-C cyclic analogs. Biopolymers 94(3):307–313

    Article  CAS  PubMed  Google Scholar 

  • Baell JB, Duggan PJ, Forsyth SA, Lewis RJ, Lok YP, Schroeder CI, Shepherd NE (2006) Synthesis and biological evaluation of anthranilamide-based non-peptide mimetics of omega-conotoxin GVIA. Tetrahedron 62(31):7284–7292

    Article  CAS  Google Scholar 

  • Baell JB, Duggan PJ, Forsyth SA, Lewis RJ, Phei Lok Y, Schroeder CI (2004) Synthesis and biological evaluation of nonpeptide mimetics of omega-conotoxin GVIA. Biorg Med Chem 12(15):4025–4037

    Article  CAS  Google Scholar 

  • Baell JB, Forsyth SA, Gable RW, Norton RS, Mulder RJ (2001) Design and synthesis of type-III mimetics of omega-conotoxin GVIA. J Comput Aided Mol Des 15(12):1119–1136

    Article  CAS  PubMed  Google Scholar 

  • Baron R, Binder A, Wasner G (2010) Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol 9(8):807–819

    Article  PubMed  Google Scholar 

  • Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139(2):267–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berecki G, McArthur JR, Cuny H, Clark RJ, Adams DJ (2014) Differential Cav2.1 and Cav2.3 channel inhibition by baclofen and alpha-conotoxin Vc1.1 via GABAB receptor activation. J Gen Physiol 143(4):465–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berecki G, Motin L, Haythornthwaite A, Vink S, Bansal P, Drinkwater R, Wang CI, Moretta M, Lewis RJ, Alewood PF, Christie MJ, Adams DJ (2010) Analgesic omega-conotoxins CVIE and CVIF selectively and voltage-dependently block recombinant and native N-type calcium channels. Mol Pharmacol 77(2):139

    Article  CAS  PubMed  Google Scholar 

  • Bernaĺdez J, Román-Gonźalez SA, Martińez O, Jimeńez S, Vivas O, Arenas I, Corzo G, Arreguiń R, García DE, Possani LD, Licea A (2013) A Conus regularis conotoxin with a novel eight-cysteine framework inhibits Cav2.2 channels and displays an anti-nociceptive activity. Mar Drugs 11(4):1188–1202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Besse D, Siedler F, Diercks T, Kessler H, Moroder L (1997) The redox potential of selenocystine in unconstrained cyclic peptides. Angew Chem Int Ed Engl 36(8):883–885

    Article  CAS  Google Scholar 

  • Biass D, Dutertre S, Gerbault A, Menou J-L, Offord R, Favreau P, Stöcklin R (2009) Comparative proteomic study of the venom of the piscivorous cone snail Conus Consors. J Proteome 72(2):210–218

    Article  CAS  Google Scholar 

  • Blanchfield J, Dutton J, Hogg R, Gallagher O, Craik D, Jones A, Adams D, Lewis R, Alewood P, Toth I (2003) Synthesis, structure elucidation, in vitro biological activity, toxicity, and Caco-2 cell permeability of lipophilic analogues of alpha-Conotoxin MII. J Med Chem 46(7):1266–1272

    Article  CAS  PubMed  Google Scholar 

  • Blanchfield JT, Gallagher OP, Cros C, Lewis RJ, Alewood PF, Toth I (2007) Oral absorption and in vivo biodistribution of alpha-conotoxin MII and a lipidic analogue. Biochem Biophys Res Commun 361(1):97–102

    Article  CAS  PubMed  Google Scholar 

  • Blanco-Canosa JB, Dawson PE (2008) An efficient Fmoc-SPPS approach for the generation of thioester peptide precursors for use in native chemical ligation. Angew Chem Int Ed Engl 47(36):6851–6855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolscher JGM, Oudhoff MJ, Nazmi K, Antos JM, Guimaraes CP, Spooner E, Haney EF, Garcia Vallejo JJ, Vogel HJ, van't Hof W, Ploegh HL, Veerman ECI (2011) Sortase A as a tool for high-yield histatin cyclization. FASEB J 25(8):2650–2658

    Article  CAS  PubMed  Google Scholar 

  • Bondebjerg J, Grunnet M, Jespersen T, Meldal M (2003) Solid-phase synthesis and biological activity of a thioether analogue of conotoxin G1. Chembiochem 4(2–3):186–194

    Article  CAS  PubMed  Google Scholar 

  • Bowersox SS, Gadbois T, Singh T, Pettus M, Wang YX, Luther RR (1996) Selective N-type neuronal voltage-sensitive calcium channel blocker, SNX-111, produces spinal antinociception in rat models of acute, persistent and neuropathic pain. J Pharmacol Exp Ther 279(3):1243

    CAS  PubMed  Google Scholar 

  • Brady MR, Baell BJ, Norton SR (2013a) Strategies for the development of conotoxins as new therapeutic leads. Mar Drugs 11(7):2293–2313

    Article  PubMed  PubMed Central  Google Scholar 

  • Brady RM, Zhang M, Gable R, Norton RS, Baell JB (2013b) De novo design and synthesis of a μ-conotoxin KIIIA peptidomimetic. Bioorg Med Chem Lett 23(17):4892–4895

    Article  CAS  PubMed  Google Scholar 

  • Brust A, Palant E, Croker DE, Colless B, Drinkwater R, Patterson B, Schroeder CI, Wilson D, Nielsen CK, Smith MT, Alewood D, Alewood PF, Lewis RJ (2009) Chi-Conopeptide pharmacophore development: toward a novel class of norepinephrine transporter inhibitor (Xen2174) for pain. J Med Chem 52(22):6991–7002

    Article  CAS  PubMed  Google Scholar 

  • Bulaj G, West PJ, Garrett JE, Watkins M, Zhang M-M, Norton RS, Smith BJ, Yoshikami D, Olivera BM (2005) Novel conotoxins from Conus Striatus and Conus Kinoshitai selectively block TTX-resistant sodium channels. Biochemistry 44(19):7259–7265

    Article  CAS  PubMed  Google Scholar 

  • Bulaj G, Zhang M-M, Green BR, Fiedler B, Layer RT, Wei S, Nielsen JS, Low SJ, Klein BD, Wagstaff JD, Chicoine L, Harty TP, Terlau H, Yoshikami D, Olivera BM (2006) Synthetic muO-conotoxin MrVIB blocks TTX-resistant sodium channel NaV1.8 and has a long-lasting analgesic activity. Biochemistry 45(23):7404–7414

    Article  CAS  PubMed  Google Scholar 

  • Callaghan B, Haythornthwaite A, Berecki G, Clark RJ, Craik DJ, Adams DJ (2008) Analgesic alpha-conotoxins Vc1.1 and Rg1A inhibit N-type calcium channels in rat sensory neurons via GABAB receptor activation. J Neurosci 28(43):10943–10951

    Article  CAS  PubMed  Google Scholar 

  • Carstens BB, Berecki G, Daniel JT, Lee HS, Jackson KAV, Tae HS, Sadeghi M, Castro J, O'Donnell T, Deiteren A, Brierley SM, Craik DJ, Adams DJ, Clark RJ (2016a) Structure–activity studies of cysteine-rich alpha-conotoxins that inhibit high-voltage-activated calcium channels via GABAB receptor activation reveal a minimal functional motif. Angew Chem Int Ed 55(15):4692–4696

    Article  CAS  Google Scholar 

  • Carstens BB, Swedberg J, Berecki G, Adams DJ, Craik DJ, Clark RJ (2016b) Effects of linker sequence modifications on the structure, stability, and biological activity of a cyclic alpha-conotoxin. Pept Sci 106(6):864–875

    Article  CAS  Google Scholar 

  • Chen S, Gopalakrishnan R, Schaer T, Marger F, Hovius R, Bertrand D, Pojer F, Heinis C (2014) Dithiol amino acids can structurally shape and enhance the ligand-binding properties of polypeptides. Nat Chem 6(11):1009–1016

    Article  CAS  PubMed  Google Scholar 

  • Chhabra S, Belgi A, Bartels P, van Lierop BJ, Robinson SD, Kompella SN, Hung A, Callaghan BP, Adams DJ, Robinson AJ, Norton RS (2014) Dicarba analogues of alpha-conotoxin RgIA. Structure, stability, and activity at potential pain targets. J Med Chem 57(23):9933

    Google Scholar 

  • Clark R, Craik D (2012) Engineering cyclic peptide toxins. Methods Enzymol 503:57–74

    Article  CAS  PubMed  Google Scholar 

  • Clark RJ, Akcan M, Kaas Q, Daly NL, Craik DJ (2012) Cyclization of conotoxins to improve their biopharmaceutical properties. Toxicon 59(4):446–455

    Article  CAS  PubMed  Google Scholar 

  • Clark RJ, Craik DJ (2010) Invited review native chemical ligation applied to the synthesis and bioengineering of circular peptides and proteins. Biopolymers 94(4):414–422

    Article  CAS  PubMed  Google Scholar 

  • Clark RJ, Fischer H, Dempster L, Daly NL, Rosengren KJ, Nevin ST, Meunier FA, Adams DJ, Craik DJ (2005) Engineering stable peptide toxins by means of backbone cyclization: stabilization of the alpha-conotoxin MII. Proc Natl Acad Sci U S A 102(39):13767–13772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark RJ, Fischer H, Nevin ST, Adams DJ, Craik DJ (2006) The synthesis, structural characterization, and receptor specificity of the alpha-conotoxin Vc1.1. J Biol Chem 281(32):23254–23263

    Article  CAS  PubMed  Google Scholar 

  • Clark RJ, Jensen J, Nevin ST, Callaghan BP, Adams DJ, Craik DJ (2010) The engineering of an orally active conotoxin for the treatment of neuropathic pain. Angew Chem Int Ed Engl 49(37):6545–6548

    Article  CAS  PubMed  Google Scholar 

  • Colgrave ML, Craik DJ (2004) Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot. Biochemistry 43(20):5965

    Article  CAS  PubMed  Google Scholar 

  • Craik DJ, Adams DJ (2007) Chemical modification of conotoxins to improve stability and activity. ACS Chem Biol 2(7):457–468

    Article  CAS  PubMed  Google Scholar 

  • Craik DJ, Daly NL, Bond T, Waine C (1999) Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J Mol Biol 294(5):1327–1336

    Article  CAS  PubMed  Google Scholar 

  • Cuthbertson A, Indrevoll B (2003) Regioselective formation, using orthogonal cysteine protection, of an alpha-conotoxin dimer peptide containing four disulfide bonds. Org Lett 5(16):2955

    Article  CAS  PubMed  Google Scholar 

  • Daly N, Ekberg J, Thomas L, Adams D, Lewis R, Craik D (2004) Structures of muO-conotoxins from Conus marmoreus: inhibitors of tetrodotosin (TTX)-sensitive and TTX-resistant sodium channels in mammalian sensory neurons. J Biol Chem 279(24):25774–25782

    Article  CAS  PubMed  Google Scholar 

  • Daly NL, Rosengren KJ, Henriques ST, Craik DJ (2011) NMR and protein structure in drug design: application to cyclotides and conotoxins. Eur Biophys J 40(4):359–370

    Article  CAS  PubMed  Google Scholar 

  • Davis J, Jones A, Lewis RJ (2009) Remarkable inter- and intra-species complexity of conotoxins revealed by LC/MS. Peptides 30(7):1222–1227

    Article  CAS  PubMed  Google Scholar 

  • Dawson PE, Muir TW, Clark-Lewis I (1994) Synthesis of proteins by native chemical ligation. Science 266(5186):776–779

    Article  CAS  PubMed  Google Scholar 

  • de Araujo AD, Callaghan B, Nevin ST, Daly NL, Craik DJ, Moretta M, Hopping G, Christie MJ, Adams DJ, Alewood PF (2011) Total synthesis of the analgesic conotoxin MrVIB through selenocysteine-assisted folding. Angew Chem 50(29):6527

    Article  CAS  Google Scholar 

  • Dekan Z, Paczkowski FA, Lewis R, Alewood P (2007) Synthesis and in vitro biological activity of cyclic lipophilic chi-conotoxin MrIA analogues. Int J Pept Res Ther 13(1–2):307–312

    Article  CAS  Google Scholar 

  • Dekan Z, Vetter I, Daly NL, Craik DJ, Lewis RJ, Alewood PF (2011) Alpha-Conotoxin ImI incorporating stable cystathionine bridges maintains full potency and identical three-dimensional structure. J Am Chem Soc 133(40):15866–15869

    Article  CAS  PubMed  Google Scholar 

  • Dekan Z, Wang C-iA, Andrews RK, Lewis RJ, Alewood PF (2012) Conotoxin engineering: dual pharmacophoric noradrenaline transport inhibitor/integrin binding peptide with improved stability. Org Biomol Chem 10(30):5791–5794

    Article  CAS  PubMed  Google Scholar 

  • Dias EL, Nguyen ST, Grubbs RH (1997) Well-defined ruthenium olefin metathesis catalysts: mechanism and activity. J Am Chem Soc 119(17):3887–3897

    Article  CAS  Google Scholar 

  • Duggan PJ, Lewis RJ, Phei Lok Y, Lumsden NG, Tuck KL, Yang A (2009) Low molecular weight non-peptide mimics of omega-conotoxin GVIA. Bioorg Med Chem Lett 19(10):2763–2765

    Article  CAS  PubMed  Google Scholar 

  • Dutertre S, Jin AH, Kaas Q, Jones A, Alewood PF, Lewis RJ (2013) Deep venomics reveals the mechanism for expanded peptide diversity in cone snail venom. Mol Cell Proteomics 12(2):312–329

    Article  CAS  PubMed  Google Scholar 

  • Dutertre S, Nicke A, Lewis RJ (2005) Beta2 subunit contribution to 4/7 alpha-conotoxin binding to the nicotinic acetylcholine receptor. J Biol Chem 280(34):30460–30468

    Article  CAS  PubMed  Google Scholar 

  • Dutton J, Bansal P, Hogg R, Adams D, Alewood P, Craik D (2002) A new level of conotoxin diversity, a non-native disulfide bond connectivity in alpha-conotoxin AuIB reduces structural definition but increases biological activity. J Biol Chem 277(50):48849–48857

    Article  CAS  PubMed  Google Scholar 

  • Dworkin RH, O’Connor AB, Backonja M, Farrar JT, Finnerup NB, Jensen TS, Kalso EA, Loeser JD, Miaskowski C, Nurmikko TJ, Portenoy RK, Rice ASC, Stacey BR, Treede R-D, Turk DC, Wallace MS (2007) Pharmacologic management of neuropathic pain: evidence-based recommendations. Pain 132(3):237–251

    Article  CAS  PubMed  Google Scholar 

  • Ekberg J, Jayamanne A, Vaughan CW, Aslan S, Thomas L, Mould J, Drinkwater R, Baker MD, Abrahamsen B, Wood JN, Adams DJ, Christie MJ, Lewis RJ (2006) muO-Conotoxin MrVIB selectively blocks Nav1.8 sensory neuron specific sodium channels and chronic pain behavior without motor deficits. Proc Natl Acad Sci USA 103(45):17030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellison M, Feng Z-P, Park AJ, Zhang X, Olivera BM, McIntosh JM, Norton RS (2008) Alpha-RgIA, a novel conotoxin that blocks the alpha9alpha10 nAChR: structure and identification of key receptor-binding residues. J Mol Biol 377(4):1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endean R, Parish G, Gyr P (1974) Pharmacology of the venom of conus geographus. Toxicon 12(2):131–138

    Article  CAS  PubMed  Google Scholar 

  • Espiritu MJ, Cabalteja CC, Sugai CK, Bingham J-P (2014) Incorporation of post-translational modified amino acids as an approach to increase both chemical and biological diversity of conotoxins and conopeptides. Amino Acids 46(1):125–151

    Article  CAS  PubMed  Google Scholar 

  • Everhart D, Cartier G, Malhotra A, Gomes A, McIntosh J, Luetje C (2004) Determinants of potency on alpha-conotoxin MII, a peptide antagonist of neuronal nicotinic receptors. Biochemistry 43(10):2732–2737

    Article  CAS  PubMed  Google Scholar 

  • Fiori S, Pegoraro S, Rudolph-Böhner S, Cramer J, Moroder L (2000) Synthesis and conformational analysis of apamin analogues with natural and non-natural cystine/selenocystine connectivities. Biopolymers 53(7):550

    Article  CAS  PubMed  Google Scholar 

  • Flinn JP, Pallaghy PK, Lew MJ, Murphy R, Angus JA, Norton RS (1999) Role of disulfide bridges in the folding, structure and biological activity of omega-conotoxin GVIA. BBA Prot Struct Molec Enzym 1434(1):177–190

    Article  CAS  Google Scholar 

  • Gehrmann J, Alewood PF, Craik DJ (1998) Structure determination of the three disulfide bond isomers of alpha-conotoxin GI: a model for the role of disulfide bonds in structural stability. J Mol Biol 278(2):401–415

    Article  CAS  PubMed  Google Scholar 

  • Gehrmann J, Daly NL, Alewood PF, Craik DJ (1999) Solution structure of alpha-conotoxin ImI by 1H nuclear magnetic resonance. J Med Chem 42(13):2364

    Article  CAS  PubMed  Google Scholar 

  • Gleeson EC, Jackson WR, Robinson AJ (2016) Ring-closing metathesis in peptides. Tetrahedron Lett 57(39):4325–4333

    Article  CAS  Google Scholar 

  • Gold MS, Gebhart GF (2010) Nociceptor sensitization in pain pathogenesis. Nat Med 16(11):1248–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gongora-Benitez M, Tulla-Puche J, Albericio F (2014) Multifaceted roles of disulfide bonds. Peptides as therapeutics. Chem Rev 114(2):901–926

    Article  CAS  PubMed  Google Scholar 

  • Gori A, Wang CIA, Harvey PJ, Rosengren KJ (2015) Stabilization of the cysteine-rich conotoxin MrIA by using a 1,2,3-triazole as a disulfide bond mimetic. Angew Chem 54(4):1361–1364

    Article  CAS  Google Scholar 

  • Gotti C, Clementi F (2004) Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 74(6):363–396

    Article  CAS  PubMed  Google Scholar 

  • Gowd KH, Blais KD, Elmslie KS, Steiner AM, Olivera BM, Bulaj G (2012) Dissecting a role of evolutionary-conserved but noncritical disulfide bridges in cysteine-rich peptides using omega-conotoxin GVIA and its selenocysteine analogs. Biopolymers 98(3):212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gowd KH, Yarotskyy V, Elmslie KS, Skalicky JJ, Olivera BM, Bulaj G (2010) Site-specific effects of diselenide bridges on the oxidative folding of a cystine knot peptide, omega-selenoconotoxin GVIA. Biochemistry 49(12):2741–2752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray WR, Luque A, Olivera BM, Barrett J, Cruz LJ (1981) Peptide toxins from conus geographus venom. J Biol Chem 256(10):4734

    CAS  PubMed  Google Scholar 

  • Gray WR, Rivier JE, Galyean R, Cruz LJ, Olivera BM (1983) Conotoxin MI. Disulfide bonding and conformational states. J Biol Chem 258(20):12247–12251

    CAS  PubMed  Google Scholar 

  • Grishin AA, Cuny H, Hung A, Clark RJ, Brust A, Akondi K, Alewood PF, Craik DJ, Adams DJ (2013) Identifying key amino acid residues that affect alpha-conotoxin AuIB inhibition of alpha3beta4 nicotinic acetylcholine receptors. J Biol Chem 288(48):34428–34442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gyanda R, Banerjee J, Chang Y-P, Phillips AM, Toll L, Armishaw CJ (2013) Oxidative folding and preparation of alpha-conotoxins for use in high-throughput structure–activity relationship studies. J Pept Sci 19(1):16–24

    Article  CAS  PubMed  Google Scholar 

  • Halai R, Callaghan B, Daly NL, Clark RJ, Adams DJ, Craik DJ (2011) Effects of cyclization on stability, structure, and activity of alpha-conotoxin RgIA at the alpha9alpha10 nicotinic acetylcholine receptor and GABA(B) receptor. J Med Chem 54(19):6984–6992

    Article  CAS  PubMed  Google Scholar 

  • Halai R, Clark RJ, Nevin ST, Jensen JE, Adams DJ, Craik DJ (2009) Scanning mutagenesis of alpha-conotoxin Vc1.1 reveals residues crucial for activity at the alpha9alpha10 nicotinic acetylcholine receptor. J Biol Chem 284(30):20275–20284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannon HE, Atchison WD (2013) Omega-conotoxins as experimental tools and therapeutics in pain management. Mar Drugs 11(3):680–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hargittai B, Sole N, Groebe S, Abramson G, Barany B (2000) Chemical syntheses and biological activities of lactam analogues of alpha-conotoxin SI. J Med Chem 43(25):4787–4792

    Article  CAS  PubMed  Google Scholar 

  • He X-H, Zang Y, Chen X, Pang R-P, Xu J-T, Zhou X, Wei X-H, Li Y-Y, Xin W-J, Qin Z-H, Liu X-G (2010) TNF-alpha contributes to up-regulation of Nav1.3 and Nav1.8 in DRG neurons following motor fiber injury. Pain 151(2):266–279

    Article  CAS  PubMed  Google Scholar 

  • Hemu X, Taichi M, Qiu Y, Dx L, Tam JP (2013) Biomimetic synthesis of cyclic peptides using novel thioester surrogates. Pept Sci 100(5):492–501

    Article  CAS  Google Scholar 

  • Holland-Nell K, Meldal M (2011) Maintaining biological activity by using triazoles as disufide bond mimetics. Angew Chem 123(22):5310–5312

    Article  Google Scholar 

  • Hui K, Lipkind G, Fozzard HA, French RJ (2002) Electrostatic and steric contributions to block of the skeletal muscle sodium channel by mu-conotoxin. J Gen Physiol 119(1):45–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huynh TG, Cuny H, Slesinger PA, Adams DJ (2015) Novel mechanism of voltage-gated N-type (Cav2.2) calcium channel inhibition revealed through alpha-conotoxin Vc1.1 activation of the GABA(B) receptor. Mol Pharmacol 87(2):240–250

    Article  PubMed  CAS  Google Scholar 

  • Janes R (2005) Alpha-Conotoxins as selective probes for nicotinic acetylcholine receptor subclasses. Curr Opin Pharmacol 5:280–292

    Article  CAS  PubMed  Google Scholar 

  • Jensen AA, Frølund B, Liljefors T, Krogsgaard-Larsen P (2005) Neuronal nicotinic acetylcholine receptors: structural revelations, target identifications, and therapeutic inspirations. J Med Chem 48(15):4705–4745

    Article  CAS  PubMed  Google Scholar 

  • Jia X, Kwon S, Wang C-IA, Huang Y-H, Chan LY, Tan CC, Rosengren KJ, Mulvenna JP, Schroeder CI, Craik DJ (2014) Semienzymatic cyclization of disulfide-rich peptides using Sortase A. J Biol Chem 289(10):6627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin A, Dutertre S, Kaas Q, Lavergne V, Kubala P, Lewis R, Alewood P (2013) Transcriptomic messiness in the venom duct of Conus miles contributes to conotoxin diversity. Mol Cell Proteomics 12(12):3824–3833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin A-H, Daly NL, Nevin ST, Wang C-IA, Dutertre S, Lewis RJ, Adams DJ, Craik DJ, Alewood PF (2008) Molecular engineering of conotoxins: the importance of loop size to alpha-conotoxin structure and function. J Med Chem 51(18):5575–5584

    Article  CAS  PubMed  Google Scholar 

  • Kaas Q, Craik DJ (2015) Bioinformatics-aided venomics. Toxins 7(6):2159–2187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaas Q, Westermann J-C, Craik DJ (2010) Conopeptide characterization and classifications: an analysis using ConoServer. Toxicon 55(8):1491–1509

    Article  CAS  PubMed  Google Scholar 

  • Kaas Q, Yu R, Jin A-H, Dutertre S, Craik DJ (2012) ConoServer: updated content, knowledge, and discovery tools in the conopeptide database. Nucleic Acids Res 40:D325

    Article  CAS  PubMed  Google Scholar 

  • Kancherla AK, Meesala S, Jorwal P, Palanisamy R, Sikdar SK, Sarma SP (2015) A disulfide stabilized beta-sandwich defines the structure of a new cysteine framework M-superfamily conotoxin. ACS Chem Biol 10(8):1847–1860

    Article  CAS  PubMed  Google Scholar 

  • Khoo KK, Feng ZP, Smith BJ, Zhang MM, Yoshikami D, Olivera BM, Bulaj G, Norton RS (2009) Structure of the analgesic mu-conotoxin KIIIA and effects on the structure and function of disulfide deletion. Biochemistry 48(6):1210–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khoo KK, Wilson MJ, Smith BJ, Zhang M-M, Gulyas J, Yoshikami D, Rivier JE, Bulaj G, Norton RS (2011) Lactam-stabilized helical analogues of the analgesic mu-conotoxin KIIIA. J Med Chem 54(21):7558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klimis H, Adams DJ, Callaghan B, Nevin S, Alewood PF, Vaughan CW, Mozar CA, Christie MJ (2011) A novel mechanism of inhibition of high-voltage activated calcium channels by alpha-conotoxins contributes to relief of nerve injury-induced neuropathic pain. Pain 152(2):259–266

    Article  CAS  PubMed  Google Scholar 

  • Knapp O, McArthur JR, Adams DJ (2012) Conotoxins targeting neuronal voltage-gated sodium channel subtypes: potential analgesics? Toxins 4(12):1236–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohno T, Kim JI, Kobayashi K, Kodera Y, Maeda T, Sato K (1995) Three-dimensional structure in solution of the calcium channel blocker omega-conotoxin MVIIA. Biochemistry 34(32):10256–10265

    Article  CAS  PubMed  Google Scholar 

  • Kwon S, Bosmans F, Kaas Q, Cheneval O, Conibear AC, Rosengren KJ, Wang CK, Schroeder CI, Craik DJ (2016) Efficient enzymatic cyclization of an inhibitory cystine knot-containing peptide. Biotechnol Bioeng 113(10):2202–2212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebbe KE, Peigneur S, Wijesekara I, Tytgat J (2014) Conotoxins targeting nicotinic acetylcholine receptors: an overview. Mar Drugs 12(5):2970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leipold E, DeBie H, Zorn S, Adolfo B, Olivera BM, Terlau H, Heinemann SH (2007) muO-Conotoxins inhibit Nav channels by interfering with their voltage sensors in domain-2. Channels 1(4):253–262

    Article  PubMed  Google Scholar 

  • Leo S, D’Hooge R, Meert T (2010) Exploring the role of nociceptor-specific sodium channels in pain transmission using Nav1.8 and Nav1.9 knockout mice. Behav Brain Res 208(1):149–157

    Article  CAS  PubMed  Google Scholar 

  • Lew MJ, Flinn JP, Pallaghy PK, Murphy R, Whorlow SL, Wright CE, Norton RS, Angus JA (1997) Structure-function relationships of omega-conotoxin GVIA. Synthesis, structure, calcium channel binding, and functional assay of alanine-substituted analogues. J Biol Chem 272(18):12014

    Article  CAS  PubMed  Google Scholar 

  • Lewis RJ (2012) Discovery and development of the chi-conopeptide class of analgesic peptides. Toxicon 59(4):524–528

    Article  CAS  PubMed  Google Scholar 

  • Lewis RJ (2015) CHAPTER 9 case study 1: development of the analgesic drugs prialt® and xen2174 from cone snail venoms. In: venoms to drugs: venom as a source for the development of human therapeutics. R Soc Chem 245–254

    Google Scholar 

  • Lewis RJ, Dutertre S, Vetter I, Christie MJ (2012) Conus venom peptide pharmacology. Pharmacol Rev 64(2):259

    Article  CAS  PubMed  Google Scholar 

  • Lluisma AO, Milash BA, Moore B, Olivera BM, Bandyopadhyay PK (2012) Novel venom peptides from the cone snail Conus pulicarius discovered through next-generation sequencing of its venom duct transcriptome. Mar Genomics 5:43–51

    Article  PubMed  PubMed Central  Google Scholar 

  • Lovelace ES, Armishaw CJ, Colgrave ML, Wahlstrom ME, Alewood PF, Daly NL, Craik DJ (2006) Cyclic MrIA: a stable and potent cyclic conotoxin with a novel topological fold that targets the norepinephrine transporter. J Med Chem 49(22):6561

    Article  CAS  PubMed  Google Scholar 

  • Lovelace ES, Gunasekera S, Alvarmo C, Clark RJ, Nevin ST, Grishin AA, Adams DJ, Craik DJ, Daly NL (2011) Stabilization of alpha-conotoxin AuIB: influences of disulfide connectivity and backbone cyclization. Antioxid Redox Signal 14(1):87

    Article  CAS  PubMed  Google Scholar 

  • Luckett S, Garcia RS, Barker JJ, Konarev AV, Shewry PR, Clarke AR, Brady RL (1999) High-resolution structure of a potent, cyclic proteinase inhibitor from sunflower seeds. J Mol Biol 290(2):525–533

    Article  CAS  PubMed  Google Scholar 

  • Luo S, Kulak JM, Cartier GE, Jacobsen RB, Yoshikami D, Olivera BM, McIntosh JM (1998) Alpha-Conotoxin AuIB selectively blocks alpha3beta4 nicotinic acetylcholine receptors and nicotine-evoked norepinephrine release. J Neurosci 18(21):8571

    CAS  PubMed  Google Scholar 

  • MacRaild CA, Illesinghe J, BJV L, Townsend AL, Chebib M, Livett BG, Robinson AJ, Norton RS (2009) Structure and activity of (2,8)-dicarba-(3,12)-cystino alpha-IMI, an alpha-conotoxin containing a nonreducible cystine analogue. J Med Chem 52(3):755–762

    Article  CAS  PubMed  Google Scholar 

  • Malmberg AB, Yaksh TL (1995) Effect of continuous intrathecal infusion of omega-conopeptides, N-type calcium-channel blockers, on behavior and antinociception in the formalin and hot-plate tests in rats. Pain 60(1):83–90

    Article  CAS  PubMed  Google Scholar 

  • Mannelli LDC, Cinci L, Micheli L, Zanardelli M, Pacini A, McIntosh JM, Ghelardini C (2014) Alpha-conotoxin RgIA protects against the development of nerve injury-induced chronic pain and prevents both neuronal and glial derangement. Pain 155(10):1986–1995

    Article  CAS  Google Scholar 

  • Marx UC, Daly NL, Craik DJ (2006) NMR of conotoxins: structural features and an analysis of chemical shifts of post-translationally modified amino acids. Magn Reson Chem 44:S41

    Article  CAS  PubMed  Google Scholar 

  • Maximilian WP, Stephanie KD, Tzu-Ying C, Eric S, Hidde LP (2011) Sortase-catalyzed transformations that improve the properties of cytokines. Proc Natl Acad Sci U S A 108(8):3169

    Article  Google Scholar 

  • McIntosh JM, Hasson A, Spira ME, Gray WR, Li W, Marsh M, Hillyard DR, Olivera BM (1995) A new family of conotoxins that blocks voltage-gated sodium channels. J Biol Chem 270(28):16796–16802

    Article  CAS  PubMed  Google Scholar 

  • Menzler S, Bikker JA, Horwell DC (1998) Synthesis of a non-peptide analogue of omega-conotoxin MVIIA. Tetrahedron Lett 39(41):7619–7622

    Article  CAS  Google Scholar 

  • Menzler S, Bikker JA, Suman-Chauhan N, Horwell DC (2000) Design and biological evaluation of non-peptide analogues of omega-conotoxin MVIIA. Bioorg Med Chem Lett 10(4):345–347

    Article  CAS  PubMed  Google Scholar 

  • Merrifield RB (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85(14):2149–2154

    Article  CAS  Google Scholar 

  • Metabolic Pharmaceuticals (2007) Metabolic discontinues clinical trial programme for neuropathic pain drug, ACV1. ASX Announcement

    Google Scholar 

  • Murakami M, Nakagawasai O, Suzuki T, Mobarakeh II, Sakurada Y, Murata A, Yamadera F, Miyoshi I, Yanai K, Tan K, Sasano H, Tadano T, Iijima T (2004) Antinociceptive effect of different types of calcium channel inhibitors and the distribution of various calcium channel alpha(1) subunits in the dorsal horn of spinal cord in mice. Brain Res 1024(1-2):122–129

    Article  CAS  PubMed  Google Scholar 

  • Muttenthaler M, Nevin ST, Grishin AA, Ngo ST, Choy PT, Daly NL, Hu S-H, Armishaw CJ, Wang C-IA, Lewis RJ, Martin JL, Noakes PG, Craik DJ, Adams DJ, Alewood PF (2010) Solving the alpha-conotoxin folding problem: efficient selenium-directed on-resin generation of more potent and stable nicotinic acetylcholine receptor antagonists. J Am Chem Soc 132(10):3514

    Article  CAS  PubMed  Google Scholar 

  • Napier IA, Klimis H, Rycroft BK, Jin AH, Alewood PF, Motin L, Adams DJ, Christie MJ (2012) Intrathecal alpha-conotoxins Vc1.1, AuIB and MII acting on distinct nicotinic receptor subtypes reverse signs of neuropathic pain. Neuropharmacology 62(7):2202

    Article  CAS  PubMed  Google Scholar 

  • Nevin ST, Clark RJ, Klimis H, Christie MJ, Craik DJ, Adams DJ (2007) Are alpha9alpha10 nicotinic acetylcholine receptors a pain target for alpha-conotoxins? Mol Pharmacol 72(6):1406–1410

    Article  CAS  PubMed  Google Scholar 

  • Nguyen GK, Wang S, Qiu Y, Hemu X, Lian Y, Tam JP (2014) Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis. Nat Chem Biol 10(9):732–738

    Article  CAS  PubMed  Google Scholar 

  • Nguyen GKT, Kam A, Loo S, Jansson AE, Pan LX, Tam JP (2015) Butelase 1: a versatile ligase for peptide and protein macrocyclization. J Am Chem Soc 137(49):15398

    Article  CAS  PubMed  Google Scholar 

  • Nielsen CK, Lewis RJ, Alewood D, Drinkwater R, Palant E, Patterson M, Yaksh TL, McCumber D, Smith MT (2005) Anti-allodynic efficacy of the chi-conopeptide, Xen2174, in rats with neuropathic pain. Pain 118(1):112–124

    Article  CAS  PubMed  Google Scholar 

  • Nishiuchi Y, Sakakibara S (1982) Primary and secondary structure of conotoxin GI, a neurotoxic tridecapeptide from a marine snail. FEBS Lett 148(2):260–262

    Article  CAS  PubMed  Google Scholar 

  • Olivera BM (1985) Peptide neurotoxins from fish-hunting cone snails. Science 230:1338

    Article  CAS  PubMed  Google Scholar 

  • Olivera BM, Seger J, Horvath MP, Fedosov AE (2015) Prey-capture strategies of fish-hunting cone snails: behavior, neurobiology and evolution. Brain Behav Evol 86(1):58–74

    Article  PubMed  PubMed Central  Google Scholar 

  • Pegoraro S, Fiori S, Rudolph-Böhner S, Watanabe TX, Moroder L (1998) Isomorphous replacement of cystine with selenocystine in endothelin: oxidative refolding, biological and conformational properties of [Sec3,Sec11,Nle7]-endothelin-11. J Mol Biol 284(3):779–792

    Article  CAS  PubMed  Google Scholar 

  • Quiram PA, Sine SM (1998) Identification of residues in the neuronal alpha7 acetylcholine receptor that confer selectivity for conotoxin ImI. J Biol Chem 273(18):11001

    Article  CAS  PubMed  Google Scholar 

  • Rauck RL, Wallace MS, Leong MS, Minehart M, Webster LR, Charapata SG, Abraham JE, Buffington DE, Ellis D, Kartzinel R, the Ziconotide 301 Study Group R (2006) A randomized, double-blind, placebo-controlled study of intrathecal ziconotide in adults with severe chronic pain. J Pain Symptom Manag 31(5):393–406

    Article  CAS  Google Scholar 

  • Robinson DS, Norton SR (2014) Conotoxin gene superfamilies. Mar Drugs 12(12):6058–6101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robinson SD, Safavi-Hemami H, McIntosh LD, Purcell AW, Norton RS, Papenfuss AT (2014) Diversity of conotoxin gene superfamilies in the venomous snail, Conus victoriae. PLoS One 9(2):e87648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41(14):2596–2599

    Article  CAS  Google Scholar 

  • Safavi-Hemami H, Li Q, Jackson RL, Song AS, Boomsma W, Bandyopadhyay PK, Gruber CW, Purcell AW, Yandell M, Olivera BM, Ellgaard L (2016) Rapid expansion of the protein disulfide isomerase gene family facilitates the folding of venom peptides. Proc Natl Acad Sci U S A 113(12):3227–3232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandall DW, Satkunanathan N, Keays DA, Polidano MA, Liping X, Pham V, Down JG, Khalil Z, Livett BG, Gayler KR (2003) A novel alpha-conotoxin identified by gene sequencing is active in suppressing the vascular response to selective stimulation of sensory nerves in vivo. Biochemistry 42:6904–6911

    Google Scholar 

  • Satkunanathan N, Livett B, Gayler K, Sandall D, Down J, Khalil Z (2005) Alpha-conotoxin Vc1.1 alleviates neuropathic pain and accelerates functional recovery of injured neurones. Brain Res 1059(2):149–158

    Article  CAS  PubMed  Google Scholar 

  • Schmalhofer WA, Calhoun J, Burrows R, Bailey T, Kohler MG, Weinglass AB, Kaczorowski GJ, Garcia ML, Koltzenburg M, Priest BT (2008) ProTx-II, a selective inhibitor of Nav1.7 sodium channels, blocks action potential propagation in nociceptors. Mol Pharmacol 74(5):1476–1484

    Article  CAS  PubMed  Google Scholar 

  • Scott DA, Wright CE, Angus JA (2002) Actions of intrathecal omega-conotoxins CVID, GVIA, MVIIA, and morphine in acute and neuropathic pain in the rat. Eur J Pharmacol 451(3):279–286

    Article  CAS  PubMed  Google Scholar 

  • Sharpe I, Palant E, Schroeder C, Kaye D, Adams D, Alewood P, Lewis R (2003) Inhibition of the norepinephrine transporter by the venom peptide chi-MrIA: site of action, Na+ dependence, and structure-activity relationship. J Biol Chem 278(41):40317–40323

    Article  CAS  PubMed  Google Scholar 

  • Sharpe IA, Gehrmann J, Loughnan ML, Thomas L, Adams DA, Atkins A, Palant E, Craik DJ, Adams DJ, Alewood PF, Lewis RJ (2001) Two new classes of conopeptides inhibit the alpha1-adrenoceptor and noradrenaline transporter. Nat Neurosci 4(9):902

    Article  CAS  PubMed  Google Scholar 

  • Siqueira SRDT, Alves B, Malpartida HMG, Teixeira MJ, Siqueira JTT (2009) Abnormal expression of voltage-gated sodium channels Nav1.7, Nav1.3 and Nav1.8 in trigeminal neuralgia. Neuroscience 164(2):573–577

    Article  CAS  PubMed  Google Scholar 

  • Smith BH, Torrance N (2012) Epidemiology of neuropathic pain and its impact on quality of life. Curr Pain Headache Rep 16(3):191–198

    Article  PubMed  Google Scholar 

  • Staats PS, Yearwood T, Charapata SG, Presley RW, Wallace MS, Byas-Smith M, Fisher R, Bryce DA, Mangieri EA, Luther RR, Mayo M, McGuire D, Ellis D (2004) Intrathecal Ziconotide in the treatment of refractory pain in patients with cancer or AIDS: a randomized controlled trial. JAMA 291(1):63–70

    Article  CAS  PubMed  Google Scholar 

  • Stevens M, Peigneur S, Dyubankova N, Lescrinier E, Herdewijn P, Tytgat J (2012) Design of bioactive peptides from naturally occurring mu-conotoxin structures. J Biol Chem 287(37):31382–31392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tam JP, Lu Y-A (1997) Synthesis of large cyclic cystine-knot peptide by orthogonal coupling strategy using unprotected peptide precursor. Tetrahedron Lett 38(32):5599–5602

    Article  CAS  Google Scholar 

  • Tang Y-Q, Yuan J, Ösapay G, Ösapay K, Tran D, Miller CJ, Ouellette AJ, Selsted ME (1999) A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science 286(5439):498–502

    Article  CAS  PubMed  Google Scholar 

  • Ton-That H, Liu G, Mazmanian SK, Faull KF, Schneewind O (1999) Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus Aureus at the LPXTG motif. Proc Natl Acad Sci U S A 96(22):12424–12429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67(9):3057–3064

    Article  PubMed  CAS  Google Scholar 

  • Townsend A, Livett BG, Bingham JP, Truong HT, Karas JA, O’Donnell P, Williamson NA, Purcell AW, Scanlon D (2009) Mass spectral identification of vc1.1 and differential distribution of conopeptides in the venom duct of Conus Victoriae. Effect of post-translational modifications and disulfide isomerisation on bioactivity. Int J Pept Res Ther 15(3):195–203

    Article  CAS  Google Scholar 

  • Ulens C, Hogg RC, Celie PH, Bertrand D, Tsetlin V, Smit AB, Sixma TK (2006) Structural determinants of selective alpha-conotoxin binding to a nicotinic acetylcholine receptor homolog AChBP. Proc Natl Acad Sci U S A 103(10):3615–3620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Hecke O, Austin SK, Khan RA, Smith BH, Torrance N (2014) Neuropathic pain in the general population: a systematic review of epidemiological studies. Pain 155(4):654–662

    Article  PubMed  Google Scholar 

  • van Lierop BJ, Robinson SD, Kompella SN, Belgi A, McArthur JR, Hung A, MacRaild CA, Adams DJ, Norton RS, Robinson AJ (2013) Dicarba alpha-conotoxin Vc1.1 analogues with differential selectivity for nicotinic acetylcholine and GABAB receptors. ACS Chem Biol 8(8):1815–1821

    Article  PubMed  CAS  Google Scholar 

  • Veber D, Milkowski J, Varga S, Denkewalter R, Hirschmann R (1972) Acetamidomethyl. A novel thiol protecting group for cysteine. J Am Chem Soc 94(15):5456–5461

    Article  CAS  PubMed  Google Scholar 

  • Vetter I, Dekan Z, Knapp O, Adams DJ, Alewood PF, Lewis RJ (2012) Isolation, characterization and total regioselective synthesis of the novel muO-conotoxin MfVIA from Conus magnificus that targets voltage-gated sodium channels. Biochem Pharmacol 84(4):540–548

    Article  CAS  PubMed  Google Scholar 

  • Vincler M, Wittenauer S, Parker R, Ellison M, Olivera BM, McIntosh JM (2006) Molecular mechanism for analgesia involving specific antagonism of alpha9alpha10 nicotinic acetylcholine receptors. Proc Natl Acad Sci U S A 103(47):17880–17884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walewska A, Mm Z, Skalicky JJ, Yoshikami D, Olivera BM, Bulaj G (2009) Integrated oxidative folding of cysteine/selenocysteine containing peptides: improving chemical synthesis of conotoxins. Angew Chem 121(12):2255–2258

    Article  Google Scholar 

  • Wan J, Brust A, Bhola RF, Jha P, Mobli M, Lewis RJ, Christie MJ, Alewood PF (2016) Inhibition of the norepinephrine transporter by chi-conotoxin dendrimers. J Pept Sci 22(5):280–289

    Article  CAS  PubMed  Google Scholar 

  • Wan J, Cooper MA, Paul B, Abraham N, Tae H-S, Lawson J, Mobli M, Vetter I, Adams DJ, Lewis RJ, Huang JX, Alewood PF (2015) Alpha-conotoxin dendrimers have enhanced potency and selectivity for homomeric nicotinic acetylcholine receptors. J Am Chem Soc 137(9):3209–3212

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Chow D, Heiati H, Shen W-C (2003) Reversible lipidization for the oral delivery of salmon calcitonin. J Control Release 88(3):369–380

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Hogenkamp DJ, Tran M, Li WY, Yoshimura RF, Johnstone TB, Shen WC, Gee KW (2006) Reversible lipidization for the oral delivery of leu-enkephalin. J Drug Target 14(3):127–136

    Article  CAS  PubMed  Google Scholar 

  • White FA, Jung H, Miller RJ (2007) Chemokines and the pathophysiology of neuropathic pain. Proc Natl Acad Sci U S A 104(51):20151–20158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wishart DS, Bigam CG, Holm A, Hodges RS, Sykes BD (1995) H-1, C-13 and N-15 random coil NMR chemical-shifts of the common amino-acids 1. Investigations of nearest-neighbor effects. J Biomol NMR 5(1):67–81

    Article  CAS  PubMed  Google Scholar 

  • Woolf CJ, Ma Q (2007) Nociceptors--noxious stimulus detectors. Neuron 55(3):353–364

    Article  CAS  PubMed  Google Scholar 

  • Yu R, Seymour VAL, Berecki G, Jia X, Akcan M, Adams DJ, Kaas Q, Craik DJ (2015) Less is more: design of a highly stable disulfide-deleted mutant of analgesic cyclic alpha-conotoxin Vc1.1. Sci Rep 5:13264

    Google Scholar 

  • Zhang L, Bulaj G (2012) Converting peptides into drug leads by lipidation. Curr Med Chem 19(11):1602–1618

    Article  CAS  PubMed  Google Scholar 

  • Zhang M-M, Green BR, Catlin P, Fiedler B, Azam L, Chadwick A, Terlau H, McArthur JR, French RJ, Gulyas J, Rivier JE, Smith BJ, Norton RS, Olivera BM, Yoshikami D, Bulaj G (2007) Structure/function characterization of mu-conotoxin KIIIA, an analgesic, nearly irreversible blocker of mammalian neuronal sodium channels. J Biol Chem 282(42):30699–30706

    Article  CAS  PubMed  Google Scholar 

  • Zheng J-S, Tang S, Qi Y-K, Wang Z-P, Liu L (2013) Chemical synthesis of proteins using peptide hydrazides as thioester surrogates. Nat Protocols 8(12):2483–2495

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Clark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Daniel, J.T., Clark, R.J. (2017). Molecular Engineering of Conus Peptides as Therapeutic Leads. In: Sunna, A., Care, A., Bergquist, P. (eds) Peptides and Peptide-based Biomaterials and their Biomedical Applications. Advances in Experimental Medicine and Biology, vol 1030. Springer, Cham. https://doi.org/10.1007/978-3-319-66095-0_10

Download citation

Publish with us

Policies and ethics