Skip to main content

Spatial Interpolation of Ewert’s Index of Continentality in Poland

  • Chapter
  • First Online:
Geoinformatics and Atmospheric Science

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 948 Accesses

Abstract

The article presents methodological considerations on the spatial interpolation of Ewert’s index of continentality for Poland. The primary objective was to perform spatial interpolation and generate maps of the index combined with selection of an optimal interpolation method and validation of the use of the decision tree proposed by Szymanowski et al. (Meteorol Z 22:577–585, 2013). The analysis involved four selected years and a multi-year average of the period 1981–2010 and was based on data from 111 meteorological stations. Three regression models: multiple linear regression (MLR), geographically weighted regression (GWR), and mixed geographically weighted regression were used in the analysis as well as extensions of two of them to the residual kriging form. The regression models were compared demonstrating a better fit of the local model and, hence, the non-stationarity of the spatial process. However, the decisive role in the selection of the interpolator was assigned to the possibility of extension of the regression model to residual kriging. A key element here is the autocorrelation of the regression residuals, which proved to be significant for MLR and irrelevant for GWR. This resulted in exclusion of geographically weighted regression kriging from further analysis. The multiple linear regression kriging was found as the optimal interpolator. This was confirmed by cross validation combined with an analysis of improvement of the model in accordance with the criterion of the mean absolute error (MAE). The results obtained facilitate modification of the scheme of selection of an optimal interpolator and development of guidelines for automation of interpolation of Ewert’s index of continentality for Poland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bailey, H. (1968). Hourly temperatures and annual range. Yearb. Assoc. Pac. Coast Geogr., 32, 25–40.

    Google Scholar 

  • Berg, H. (1944). Zum Begriff der Kontinentalitat. Meteorologische Zeitschrift, 61, 283–284.

    Google Scholar 

  • Caccianiga, M., Andreis, C., Armiraglio, S., Leonelli, G., Pelfini, M., & Sala, D. (2008). Climate continentality and treeline species distribution in the Alps. Plant Biosyst., 142, 66–78.

    Google Scholar 

  • Conrad, V. (1946). Usual formulas of continentality and their limits of validity, Eos T. American Geophysical Union, 27, 663–664.

    Google Scholar 

  • Conrad, V., & Pollak, L. W. (1950). Methods in climatology (2nd ed.). Cambridge: Harvard University Press.

    Google Scholar 

  • CORINE Land Cover 2000 in Poland. (2004). Final Report, Warsaw. http://www.igik.edu.pl/images/stories/sip/clc_final_report_pl.pdf. Accessed Aug 2012.

  • COST Action 719 Final Report. (2008). In O. E. Tveito, M. Wegehenkel, F. van der Wel, & H. Dobesch (Eds.), The use of geographic information systems in climatology and meteorology. Luxembourg: Office for Official Publications of the European Communities.

    Google Scholar 

  • USGS Land Cover (2011). http://landcover.usgs.gov/usgslandcover.php. Accessed Mar 2011.

  • Dobesch, H., Dumolard, P., & Dyras, I. (Eds.). (2007). Spatial interpolation for climate data: The use of GIS in climatology and meteorology. London: ISTE Ltd.

    Google Scholar 

  • Driscoll, D. M., & Yee Fong, J. M. (1992). Continentality: A basic parameter re-examined. International Journal of Climatology, 12, 185–192.

    Google Scholar 

  • Ewert, A. (1963). Kontynentalizm termiczny klimatu. Przegl. Geofiz. XVI, 3, 143–150.

    Google Scholar 

  • Ewert, A. (1972). O obliczaniu kontynentalizmu termicznego klimatu. Przegl. Geogr. XLIV, 2, 273–286.

    Google Scholar 

  • Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically weighted regression: The analysis of spatially varying relationships. Chichester: Wiley.

    Google Scholar 

  • Gorczyński, W. (1920). Sur le Calcul du Degré du Continentalisme et son Application dans la Climatologie. Geografiska Annaler, 2, 324–331.

    Google Scholar 

  • Johansson, O. V. (1926). Über die Asymmetrie der Meteorologische Schwankungen, Societas Scientiarum Fennica Communications in Mathematical Physics, 3 I, Helsingfors, 124.

    Google Scholar 

  • Matheron, G. (1971). The theory of regionalised variables and its applications (Les Cahiers du Centre de Morphologie Mathematique de Fontainebleau, 5. Ecole Nationale Superieure’ des Mines de Paris).

    Google Scholar 

  • GRASS Development Team. (2011). Geographic resources analysis support system (GRASS) Software, Version 6.4.0. Open Source Geospatial Foundation. http://grass.osgeo.org.

  • Hela, I. (1953). Regional distribution of the continentality in the climate of the oceans. Geophysica, 4, 41–47.

    Google Scholar 

  • Hengl, T. (2007). A practical guide to geostatistical mapping of environmental variables. Luxembourg: Office for Official Publications of the European Communities.

    Google Scholar 

  • Hogewind, F., & Bissolli, P. (2011). Operational maps of monthly mean temperature for WMO Region VI (Europe and Middle East). Idojaras, 115, 31–49.

    Google Scholar 

  • Holmlund, P., & Schneider, T. (1997). The effect of continentality on glacier response and mass balance. Annals of Glaciology, 24, 272–276.

    Google Scholar 

  • Ivanov, N. (1953). Ob opredelenyi welichyny kontinentalnosti klimata, Izv. Vses. Geogr. Obshch, 85.

    Google Scholar 

  • Ivanov, N. (1959). Belts of continentality on the globe. Izv Vses Geogr Obshch, 91, 410–423.

    Google Scholar 

  • Kalarus, M., Schuh, H., Kosek, W., Akyilmaz, O., Bizouard, C., Gambis, D., et al. (2010). Achievements of the Earth orientation parameters prediction comparison campaign. Journal of Geodesy, 84, 587–596.

    Google Scholar 

  • Khromov, S. P. (1957). K voprosu o kontinentalnosti klimata, Izv. Vses. Geogr. Obshch. 89.

    Google Scholar 

  • Kożuchowski, K. (2003). Cyrkulacyjne czynniki klimatu Polski. Czasopismo Geograficzne, LXXIV, 1–2, 93–105.

    Google Scholar 

  • Kożuchowski, K. (2011). Klimat Polski. Nowe Spojrzenie. Warszawa: Wydawnictwo Naukowe PWN.

    Google Scholar 

  • Kożuchowski, K., & Marciniak, K. (1986). Fluktuacje kontynentalizmu klimatu Polski na tle warunków cyrkulacyjnych i solarnych (1881–1980). Przegląd Geofizyczny, 31(39), 139–152.

    Google Scholar 

  • Kożuchowski, K., & Marciniak, K. (1992). Kontynentalizm termiczny klimatu na obszarze Polski, Wiad. IMGW XV(XXXVI), 4, 89–93.

    Google Scholar 

  • Kożuchowski, K., & Wibig, J. (1988). Kontynentalizm pluwialny w Polsce: Zróżnicowanie geograficzne i zmiany wieloletnie. Acta Geographica Lodziensia, 55, 102.

    Google Scholar 

  • Kryza, M., Szymanowski, M., Migała, K., & Pietras, M. (2010). Spatial information on total solar radiation: Application and evaluation of the r.sun model for the Wedel Jarlsberg Land, Svalbard, Pol. Polar Research, 31(1), 17–32.

    Google Scholar 

  • Li, J., & Heap, A. D. (2008). A review of spatial interpolation methods for environmental scientists. Canberra: Geoscience Australia.

    Google Scholar 

  • Marti, P., & Gasque, M. (2010). Ancillary data supply strategies for improvement of temperature-based ETo ANN models. Agricultural Water Management, 97, 939–955.

    Google Scholar 

  • Mikolášková, K. (2009). A regression evaluation of thermal continentality, Geografie—Sbornik České Geografické Společnosti, 114(4), 350–362.

    Google Scholar 

  • Moran, P. A. P. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1), 17–23.

    Google Scholar 

  • Nakaya, T. (2016). GWR4 User Manual. GWR 4 Windows Application for Geographically Weighted Regression Modelling, GWR4 Development Team. https://raw.githubusercontent.com/gwrtools/gwr4/master/GWR4manual_409.pdf.

  • Nakaya, T., Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2005). Geographically weighted Poisson regression for disease associative mapping. Statistics in Medicine, 24, 2695–2717.

    Google Scholar 

  • Oliver, J. (1970). An air mass evaluation of the concept of continentality. The Professional Geographer, 22, 83–87.

    Google Scholar 

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1988). Numerical recipes in C, the art of scientific computing. New York: Cambridge University Press.

    Google Scholar 

  • Raunio, N. (1948). The effect of local factors on meteorological observations at Tórshavn. Geophysica, 3, 173–179.

    Google Scholar 

  • Salonen, J. S., Seppä, H., Luoto, M., Bjune, A. E., & Birks, H. J. B. (2012). A North European pollen—climate calibration set: Analysing the climatic responses of a biological proxy using novel regression tree methods. Quaternary Science Reviews, 45, 95–110.

    Google Scholar 

  • Spitaler, R. (1922). Klimatische Kontinentalität und Ozeanität. Petermann’s Geographische Mitteilungen, 68, 113.

    Google Scholar 

  • Šuri, M., & Hofierka, J. (2004). A new GIS-based solar radiation model and its application to photovoltaic assessments. Transactions in GIS, 8, 175–190.

    Google Scholar 

  • Swoboda, G. (1922). Linien gleicher Kontinentalität und Ozeanität 1. Weltkarte 2. Europa, Justus Perthes/Petermanns Mitteilungen, Gotha.

    Google Scholar 

  • Szreffel, C. (1961). Przegląd ważniejszych sposobów charakterystyki stopnia kontynentalizmu. Przegląd Geograficzny VI, 3, 191–199.

    Google Scholar 

  • Szymanowski, M., & Kryza, M. (2011). Application of geographically weighted regression for modelling the spatial structure of urban heat island in the city of Wroclaw (SW Poland). Procedia Environmental Sciences, 3, 87–92.

    Google Scholar 

  • Szymanowski, M., & Kryza, M. (2012). Local regression models for spatial interpolation of urban heat island—an example from Wrocław, SW Poland. Theoretical and Applied Climatology, 108, 53–71.

    Google Scholar 

  • Szymanowski, M., & Kryza, M. (2015). The role of auxiliary variables in deterministic and deterministic-stochastic spatial models of air temperature in Poland. Pure and Applied Geophysics,. doi:10.1007/s00024-015-1199-2.

  • Szymanowski, M., Kryza, M., Smaza, M. (2007). A GIS approach to spatialize selected climatological parameters for wine-growing in Lower Silesia, Poland. In: Střelcová, K., Škvarenina, J., Blaženec, M (Ed.) Bioclimatology and natural hazards, International Conference, Poľana nad Detvou, Slovakia, 17–20 September 2007, CD-ROM, ISBN 978-80-228-17-60-8.

    Google Scholar 

  • Szymanowski, M., Kryza, M., & Spallek, W. (2012). Air temperature atlas for Poland: The methodical approach. Wrocław: Uniwersytet Wrocławski. (in Polish, English summary).

    Google Scholar 

  • Szymanowski, M., Kryza, M., & Spallek, W. (2013). Regression-based air temperature spatial prediction models: An example from Poland. Meteorologische Zeitschrift, 22, 577–585.

    Google Scholar 

  • Tobler, W. (1970). A computer movie simulating urban growth in the Detroit region. Econ. Geogr., 46, 234–240.

    Google Scholar 

  • Torregrosa, A., Taylor, M. D., Flint, L. E., & Flint, A. L. (2013). Present, future, and novel bioclimates of the San Francisco, California Region. PLoS ONE, 8(3), e58450. doi:10.1371/journal.pone.0058450.

  • Ustrnul, Z., & Czekierda, D. (2005). Application of GIS for the development of climatological air temperature maps: An example from Poland. Meteorological Application, 12, 43–50.

    Google Scholar 

  • Ustrnul, Z., & Czekierda, D. (2009). Atlas of extreme meteorological phenomena and synoptic situations in Poland. Warszawa: IMGW.

    Google Scholar 

  • Willmott, C. J., & Matsuura, K. (1995). Smart interpolation of annually averaged air temperature in the United States. Journal of Applied Meteorology, 34, 2577–2586.

    Google Scholar 

  • Woś, A. (2010). Klimat Polski w Drugiej Połowie XX Wieku. Poznań: Wydawnictwo Naukowe UAM.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Szymanowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Szymanowski, M., Bednarczyk, P., Kryza, M., Nowosad, M. (2018). Spatial Interpolation of Ewert’s Index of Continentality in Poland. In: Niedzielski, T., Migała, K. (eds) Geoinformatics and Atmospheric Science. Pageoph Topical Volumes. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-66092-9_9

Download citation

Publish with us

Policies and ethics