Skip to main content

Commutative Rings with a Prescribed Number of Isomorphism Classes of Minimal Ring Extensions

  • Chapter
  • First Online:
Rings, Polynomials, and Modules

Abstract

Let κ be a cardinal number. If κ ≥ 2, then there exists a (commutative unital) ring A such that the set of A-algebra isomorphism classes of minimal ring extensions of A has cardinality κ. The preceding statement fails for κ = 1 and, if A must be nonzero, it also fails for κ = 0. If \( \kappa \leq \aleph _{0} \), then there exists a ring whose set of maximal (unital) subrings has cardinality κ. If an infinite cardinal number κ is of the form κ = 2λ for some (infinite) cardinal number λ, then there exists a field whose set of maximal subrings has cardinality κ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azarang, A.: On maximal subrings. Far East J. Math. Sci. 32, 107–118 (2009)

    MATH  MathSciNet  Google Scholar 

  2. Azarang, A., Karamzadeh, O.A.S.: On the existence of maximal subrings in commutative Artinian rings. J. Algebra Appl. 9, 771–778 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Azarang, A., Karamzadeh, O.A.S.: Which fields have no maximal subrings? Rend. Sem. Mat. Univ. Padova 126, 213–228 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Azarang, A., Karamzadeh, O.A.S.: On maximal subrings of commutative rings. Algebra Colloq. 19, 1125–1138 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Atiyah, M.F., Macdonald, I.G.: Introduction to Commutative Algebra. Addison-Wesley, Reading, MA (1969)

    MATH  Google Scholar 

  6. Dobbs, D.E.: Cech cohomology and a dimension theory for commutative rings. Ph.D. thesis, Cornell University, Ithaca, New York (1969)

    Google Scholar 

  7. Dobbs, D.E.: Every commutative ring has a minimal ring extension. Commun. Algebra 34, 3875–3881 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dobbs, D.E.: On the commutative rings with at most two proper subrings. Int. J. Math. Math. Sci. 2016, 1–13 (2016). Article ID 6912360. doi:10.1155/2016/6912360

    Google Scholar 

  9. Dobbs, D.E., Mullins, B.: On the lengths of maximal chains of intermediate fields in a field extension. Commun. Algebra 29, 4487–4507 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dobbs, D.E., Shapiro, J.: A classification of the minimal ring extensions of certain commutative rings. J. Algebra 308, 800–821 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dobbs, D.E., Mullins, B., Picavet, G., Picavet-L’Hermitte, M.: On the FIP property for extensions of commutative rings. Commun. Algebra 33, 3091–3119 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ferrand, D., Olivier, J.-P.: Homomorphismes minimaux d’anneaux. J. Algebra 16, 461–471 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gilmer, R.: Multiplicative Ideal Theory. Dekker, New York (1972)

    MATH  Google Scholar 

  14. Halmos, P.R.: Naive Set Theory. Van Nostrand, Princeton (1960)

    MATH  Google Scholar 

  15. Huckaba, J.A.: Commutative Rings with Zero Divisors. Dekker, New York (1988)

    MATH  Google Scholar 

  16. Hungerford, T.W.: Algebra. Springer, New York (1974)

    MATH  Google Scholar 

  17. Jacobson, N.: Lectures in Abstract Algebra, Volume III - Theory of Fields and Galois Theory. Van Nostrand, Princeton (1964)

    Book  MATH  Google Scholar 

  18. Kaplansky, I.: Commutative Rings, rev. ed. University of Chicago Press, Chicago (1974)

    Google Scholar 

  19. Lewis, W.J.: The spectrum of a ring as a partially ordered set. J. Algebra 25, 419–434 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  20. Picavet, G., Picavet-L’Hermitte, M.: About minimal morphisms. In: Multiplicative Ideal Theory in Commutative Algebra, pp. 369–386. Springer, New York (2006)

    Google Scholar 

  21. Picavet, G., Picavet-L’Hermitte, M.: Modules with finitely many submodules. Int. Electron. J. Algebra 19, 119–131 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  22. Stepräns, J.: The number of submodules. Proc. Lond. Math. Soc. 49, 183–192 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  23. Werner, N.J.: Covering numbers of finite rings. Am. Math. Mon. 122, 552–566 (2015)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Dobbs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dobbs, D.E. (2017). Commutative Rings with a Prescribed Number of Isomorphism Classes of Minimal Ring Extensions. In: Fontana, M., Frisch, S., Glaz, S., Tartarone, F., Zanardo, P. (eds) Rings, Polynomials, and Modules. Springer, Cham. https://doi.org/10.1007/978-3-319-65874-2_8

Download citation

Publish with us

Policies and ethics