Skip to main content

Finite Element Modeling of Friction Stir Spot Welding (FSSW) of Ti-6Al-4V

  • Conference paper
  • First Online:
Proceedings of the Symposium of Aeronautical and Aerospace Processes, Materials and Industrial Applications (IMRC 2016)

Included in the following conference series:

Abstract

Titanium alloys, especially Ti-6Al-4V, have been widely used in the aerospace industry due to their high specific strength, high heat-resistant, and high corrosion-resistant properties. This alloy is used in current airframe applications for medium-sized forgings in high load transfer components such as the engine pylon and undercarriage support fittings on the wing, adopting the friction stir spot welding to reduce the use of bolts on structural components. Based on finite element analysis, the three-dimensional model, described in this work, combines the mechanical action of the shoulder and the thermomechanical effect of the welded. Johnson–Cook  model is used as a basis of constitutive law in which the yield strength is affected by the temperature and strain rate for the Ti-6Al-4V alloy. The sheet of 2.3 mm thickness were friction stir spot welded using a tool with a convex scrolled shoulder made of a polycrystalline cubic boron nitride (PCBN). The parameter processes employed in this study are rotational speed, plunge speed, and dwell time and plunge depths. The material flow was also numerically simulated using the DEFORM-3D FE software. Results indicated with the incremental penetration of the pin; material from below the pin was displaced upward along the sides of the pin. FE results were verified by experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malafaia, A. M. S., Milan, M. T., Oliveira, M. F., & Spinelli, D. (2010). Fatigue behavior of friction stir spot welding and riveted joints in an al alloy. Procedia Engineering, 2(1), 1815–1821. http://dx.doi.org/10.1016/j.proeng.2010.03.195

  2. Malik, V., Sanjeev, N. K., Hebbar, H. S., & Kailas, S. V. (2014). Time efficient simulations of plunge and dwell phase of FSW and its significance in FSSW. Procedia Materials Science, 5, 630–639. http://dx.doi.org/10.1016/j.mspro.2014.07.309

  3. Lathabai, S., Painter, M. J., Cantin, G. M. D., Tyagi, V. K., & Pine Mountain, G. (2006). Friction stir spot welding of automotive lightweight alloys. In Proceeding go the 7th international conference on trends in welding research. Georgia: Pine Mountain.

    Google Scholar 

  4. Dawes, C. J., & Thomas, W. M. (1996). Friction stir process welds aluminium alloys: The process produces low-distortion, high-quality, low-cost welds on aluminium. Welding Journal, 75(3), 41–45.

    Google Scholar 

  5. Zimmer, S., Langlois, L., Laye, J., & Bigot, R. (2010). Experimental investigation of the influence of the FSW plunge processing parameters on the maximum generated force and torque. International Journal of Advanced Manufacturing Technology, 47(1–4), 201–215. doi:10.1007/s00170-009-2188-3

  6. McNelley, T. R. (2010). Procesado por fricción batida (FSP): afino de la microestructura y mejora de propiedades. Revista de Metalurgia, 46(Extra), 149–156. http://dx.doi.org/10.3989/revmetalmadrid.19XIIPMS

  7. Lippold, J. C., & Livingston, J. J. (2013). Microstructure evolution during friction stir processing and hot torsion simulation of Ti-6Al-4V. Metallurgical and Materials Transactions A, Physical Metallurgy and Materials Science, 44(8), 3815–3825. http://dx.doi.org/10.1007/s11661-013-1764-1

  8. Buffa, G., Fratini, L., & Micari, F. (2012). Mechanical and microstructural properties prediction by artificial neural networks in FSW processes of dual phase titanium alloys. Journal of Manufacturing Processes, 14(3), 289–296. http://dx.doi.org/ 10.1016/j.jmapro.2011.10.007.

    Article  Google Scholar 

  9. Khairuddin, J. T., Almanar, I. P., Abdullah, J., & Hussain, Z. (2012). Principles and Thermo-mechanical model of friction stir welding. INTECH Open Access Publisher. http://dx.doi.org/10.5772/50156

  10. Mishra, R. S., & Ma, Z. Y. (2005). Friction stir welding and processing. Materials Science and Engineering: R: Reports, 50(1), 1–78. http://dx.doi.org/10.1016/j.mser.2005.07.001

  11. Lee, J. J., Lukachko, S. P., Waitz, I. A., & Schafer, A. (2001). Historical and future trends in aircraft performance, cost, and emissions. Annual Review of Energy and the Environment, 26(1), 167–200. doi:10.1146/annurev.energy.26.1.167

  12. Tutar, M., Aydin, H., Yuce, C., Yavuz, N., & Bayram, A. (2014). The optimisation of process parameters for friction stir spot-welded AA3003-H12 aluminium alloy using a Taguchi orthogonal array. Materials & Design, 63, 789–797. http://dx.doi.org/10.1016/j.matdes.2014.07.003

  13. Boyer, R. R. (1995). Titanium for aerospace: Rationale and applications. Advanced Performance Materials, 2(4), 349–368. doi:10.1007/BF00705316

  14. Arcella, F. G., & Froes, F. H. (2000). Producing titanium aerospace components from powder using laser forming. JOM Journal of the Minerals, Metals and Materials Society, 52(5), 28–30. doi:10.1007/s11837-000-0028-x

Download references

Acknowledgments

F. Quiroz is grateful for the financial support granted by PAICYT program. The authors wish to thank the Centro de Investigación e Innovación en Ingeniería Aeronáutica of the Facultad Ingeniería Mecánica y Eléctrica of the Universidad Autónoma de Nuevo León.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Quiroz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Quiroz, F., García-Castillo, F.A., Reyes-Osorio, L.A., Ávila-Cabrera, A. (2018). Finite Element Modeling of Friction Stir Spot Welding (FSSW) of Ti-6Al-4V. In: Zambrano-Robledo, P., Salinas-Rodriguez, A., Almeraya Calderon, F. (eds) Proceedings of the Symposium of Aeronautical and Aerospace Processes, Materials and Industrial Applications. IMRC 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-65611-3_11

Download citation

Publish with us

Policies and ethics