Skip to main content

Cellular Potts Models for Interacting Cell Populations: Mathematical Foundation, Challenges, and Future Prospects

  • Chapter
  • First Online:
Probabilistic Cellular Automata

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 27))

Abstract

Cellular Potts models (CPMs) are extensions of asynchronous probabilistic cellular automata (PCA) developed specifically to model interacting cell populations. They constitute a modeling framework for the field of cell and tissue biology that is particularly useful when the details of intercellular interaction are essentially determined by the shape and the size of the individual cells as well as the length of the contact area between neighboring cells. In this chapter, the mathematical foundation of CPMs and their relation to PCA as well as to standard Markov chains are reviewed. On the basis of their mathematical properties, the challenges of applying CPMs for studying tissue organization from the cell-based approach are explained. In conclusion, future prospects and necessary developments are discussed from the mathematical and the modeling point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For the Kronecker symbol \(\delta \), it holds that \(\delta (u,v)= 1\) if \(u=v\) and \(\delta (u,v)= 0\) otherwise.

References

  1. Alber, M., Chen, N., Lushnikov, P.M., Newman, S.A.: Continuous macroscopic limit of a discrete stochastic model for interaction of living cells. Phys. Rev. Lett. 99, 168102 (2007)

    Article  Google Scholar 

  2. Balter, A., Merks, R.M.H., Poplawski, N.J., Swat, M., Glazier, J.A.: The Glazier-Graner-Hogeweg model: extensions, future directions, and opportunities for further study. In: Anderson, A.R.A., Chaplain, M.A.J., Rejniak, K.A. (eds.) Single Cell-Based Models in Biology and Medicine. Mathematics and Biosciences in Interaction, pp. 151–167. Springer, Berlin (2007)

    Chapter  Google Scholar 

  3. Brémaud, P.: Markov chains, Gibbs Fields, Monte Carlo Simulation and Queues. Springer, Berlin (1999)

    MATH  Google Scholar 

  4. Czirok, A., Varga, K., Mehes, E., Szabo, A.: Collective cell streams in epithelial monolayers depend on cell adhesion. New J. Phys. 15(7), 075006 (2013)

    Article  Google Scholar 

  5. Deutsch, A., Dormann, S.: Cellular Automaton Modeling of Biological Pattern Formation: Characterization, Applications, and Analysis. Birkhäuser, Boston (2005)

    MATH  Google Scholar 

  6. Glazier, J.A., Balter, A., Poplawski, N.J.: Magnetization to morphogenesis: a brief history of the Glazier-Graner-Hogeweg model. In: Anderson, A.R.A., Chaplain, M.A.J., Rejniak, K.A. (eds.) Single Cell-Based Models in Biology and Medicine. Mathematics and Biosciences in Interaction, pp. 79–106. Springer, Berlin (2007)

    Chapter  Google Scholar 

  7. Glazier, J.A., Graner, F.: Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E. 47(3), 2128–2154 (1993)

    Article  Google Scholar 

  8. Guzzetti, F.: Stochastic lattice-based model: a biological application for contact inhibition. Master thesis, Universita degli Studi di Milano (2012)

    Google Scholar 

  9. Hogeweg, P.: Evolving mechanisms of morphogenesis: on the interplay between differential adhesion and cell differentiation. J. Theor. Biol. 203(4), 317–333 (2000)

    Article  Google Scholar 

  10. Landsberg, K.P., Farhadifar, R., Ranft, J., Umetsu, D., Widmann, T.J., Bittig, T., Said, A., Jülicher, F., Dahmann, C.: Increased cell bond tension governs cell sorting at the drosophila anteroposterior compartment boundary. Curr. Biol. 19(22), 1950–1955 (2009)

    Article  Google Scholar 

  11. Lebowitz, J.L., Maes, C., Speer, E.R.: Statistical mechanics of probabilistic cellular automata. J. Stat. Phys. 59(1–2), 117–170 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, J.F., Lowengrub, J.: The effects of cell compressibility, motility and contact inhibition on the growth of tumor cell clusters using the cellular potts model. J. Theor. Biol. 343, 79–91 (2014)

    Article  Google Scholar 

  13. Madras, N.N.: Lectures on Monte Carlo methods. Fields Institute Monographs. American Mathematical Society (2002)

    Google Scholar 

  14. Marée, A.F.M., Jilkine, A., Dawes, A., Grieneisen, V.A., Edelstein-Keshet, L.: Polarization and movement of keratocytes: a multiscale modelling approach. Bull. Math. Biol. 68(5), 1169–1211 (2006)

    Article  MATH  Google Scholar 

  15. Nagai, T., Kawasaki, K., Nakamura, K.: Vertex dynamics of two-dimensional cellular patterns. J. Phys. Soc. Jpn 57(7), 2221–2224 (1988)

    Article  MathSciNet  Google Scholar 

  16. Nakajima, A., Ishihara, S.: Kinetics of the cellular Potts model revisited. New J. Phys. 13(3), 033035 (2011)

    Article  Google Scholar 

  17. Newman, T.J.: Modeling multicellular systems using subcellular elements. Math. Biosci. Eng. 2(3), 611–622 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ouchi, N.B., Glazier, J.A., Rieu, J., Upadhyaya, A., Sawada, Y.: Improving the realism of the cellular Potts model in simulations of biological cells. Physica A 329(3–4), 451–458 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sandersius, S.A., Weijer, C.J., Newman, T.J.: Emergent cell and tissue dynamics from subcellular modeling of active biomechanical processes. Phys. Biol. 8(4), 045007 (2011)

    Article  Google Scholar 

  20. Savill, N.J., Hogeweg, P.: Modelling morphogenesis: from single cells to crawling slugs. J. Theor. Biol. 184(3), 229–235 (1997)

    Article  Google Scholar 

  21. Starruss, J., Bley, T., Sogaard-Andersen, L., Deutsch, A.: A new mechanism for collective migration in Myxococcus xanthus. J. Stat. Phys. 128(1–2), 269–286 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Starruß, J., de Back, W., Brusch, L., Deutsch, A.: Morpheus: a user-friendly modeling environment for multiscale and multicellular systems biology. Bioinformatics 30(9), 1331–1332 (2014)

    Article  Google Scholar 

  23. Steinberg, M.S.: Reconstruction of tissues by dissociated cells. Science 141, 401–408 (1963)

    Article  Google Scholar 

  24. Swat, M.H., Thomas, G.L., Belmonte, J.M., Shirinifard, A., Hmeljak, D., Glazier, J.A.: Multi-scale modeling of tissues using CompuCell3d. In: Asthagiri, A.R., Arkin, A.P. (eds.) Computational Methods in Cell Biology. Methods in Cell Biology, pp. 325–366. Academic Press, Dublin (2012)

    Chapter  Google Scholar 

  25. Turner, S., Sherratt, J.A., Painter, K.J., Savill, N.J.: From a discrete to a continuous model of biological cell movement. Phys. Rev. E 69(2), 021910 (2004)

    Article  MathSciNet  Google Scholar 

  26. Voss-Böhme, A., Deutsch, A.: On the cellular basis of cell sorting kinetics. J. Theor. Biol. 263(4), 419–436 (2010)

    Article  MathSciNet  Google Scholar 

  27. Voss-Böhme, A.: Multi-scale modeling in morphogenesis: a critical analysis of the cellular Potts model. PLoS ONE 7(9), e42852 (2012)

    Article  Google Scholar 

  28. Weliky, M., Oster, G.: The mechanical basis of cell rearrangement. Development 109(2), 373–386 (1990)

    Google Scholar 

  29. Zajac, M., Jones, G.L., Glazier, J.A.: Simulating convergent extension by way of anisotropic differential adhesion. J. Theor. Biol. 222, 247–259 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks Andreas Deutsch for discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Voss-Böhme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Voss-Böhme, A. (2018). Cellular Potts Models for Interacting Cell Populations: Mathematical Foundation, Challenges, and Future Prospects. In: Louis, PY., Nardi, F. (eds) Probabilistic Cellular Automata. Emergence, Complexity and Computation, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-65558-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65558-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65556-7

  • Online ISBN: 978-3-319-65558-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics