Skip to main content

Competition for Resources and Space Contributes to the Emergence of Drug Resistance in Cancer

  • Chapter
  • First Online:
Advanced Computing in Industrial Mathematics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 728))

  • 502 Accesses

Abstract

Recent experiments reveal targeted therapy of tumours promotes the spread of drug-resistant cancer cells in mixed sensitive-resistant tumours. The hypothesis is that drug-stressed sensitive cells produce diffusible growth factors that stimulate the expansion of drug-resistant cells. A mathematical model employing simple ecological competition and a nonlinear motility law is able to reproduce the magnitude of observed expansion of the resistant populations volume without invoking production of diffusible growth factors. The model shows how the therapy-induced removal of the sensitive population alleviates the competitive pressure on the resistant for resources and space and confirms the in vivo experimental findings, and sheds light onto mechanisms behind the large increase of the drug-resistant cancer cells in the treated tumour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Obenauf, A., Zou, Y., Ji, A., Vanharanta, S., Shu, W., Shi, H., Kong, X., Bosenberg, M., Wiesner, T., Rosen, N., Lo, R., Massague, J.: Therapy-induced tumour secretomes promote resistance and tumour progression. Nature 520, 368–372 (2015)

    Google Scholar 

  2. Sun, Y., Campisi, J., Higano, C., Beer, T., Porter, P., Coleman, I., True, L., Nelson, P.: Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat. Med. 18, 1359–1368 (2012)

    Google Scholar 

  3. Wilson, T., Fridlyand, J., Yan, Y., Penuel, E., Burton, L., Chan, E., Peng, J., Lin, E., Wang, Y., Sosman, J., Ribas, A., Li, J., Moffat, J., Sutherlin, D., Koeppen, H., Merchant, M., Neve, R., Settleman, J.: Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487, 505–509 (2012)

    Google Scholar 

  4. Korolev, K., Xavier, J., Gore, J.: Turning ecology and evolution against cancer. Nat. Rev. Cancer 14, 371–380 (2014)

    Google Scholar 

  5. Aktipis, C., Boddy, A., Gatenby, R., Brown, J., Maley, C.: Life history trade-offs in cancer evolution. Nat. Rev. Cancer 13, 883–892 (2013)

    Google Scholar 

  6. Martin, P.: Trade-offs and biological diversity: integrative answers to ecological questions. In: Martin, L., Ghalambor, C., Woods, H. (eds.) Integrative Organismal Biology, pp. 291–308. Wiley (2014)

    Google Scholar 

  7. Carré, M., Bondarenko, M., Montero, M-P., Chapuisat, G., Benabdallah, A., Le Grand, M., Braguer, D., André, N., Pasquier, E.: Metronomic scheduling: a promising strategy to manage intratumor heterogeneity and control treatment resistance. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research, April 18–22 2015, Philadelphia, PA (Cancer Res 75(15 Suppl), 2572 (2015))

    Google Scholar 

  8. Warburg, O.: On the origin of cancer cells. Science 123, 309–314 (1956)

    Article  Google Scholar 

  9. Kallinowski, F., Vaupel, P., Runkel, S., Berg, G., Fortmeyer, H.P., Baessler, K.H., Wagner, K., Mueller-Klieser, W., Walenta, S.: Glucose uptake, lactate release, ketone body turnover, metabolic micromilieu, and pH distributions in human breast cancer xenografts in nude rats. Cancer Res. 48, 7264–7272 (1988)

    Google Scholar 

  10. Peppicelli, S., Bianchini, F., Calorini, L.: Extracellular acidity, a “reappreciated” trait of tumor environment driving malignancy: perspectives in diagnosis and therapy. Cancer Metastasis Rev. 33, 823–832 (2014)

    Google Scholar 

  11. Provent, P., Benito, M., Hiba, B., Farion, R., López-Larrubia, P., Ballesteros, P., Rémy, C., Segebarth, C., Cerdán, S., Coles, J., García-Martín, M.: Serial in vivo spectroscopic nuclear magnetic resonance imaging of lactate and extracellular pH in rat gliomas shows redistribution of protons away from sites of glycolysis. Cancer Res. 67, 7638–7645 (2007)

    Article  Google Scholar 

  12. Carmona-Fontaine, C., Bucci, V., Akkari, L., Deforet, M., Joyce, J.A., Xavier, J.B.: Emergence of spatial structure in the tumor microenvironment due to the Warburg effect. Proc. Nat. Acad. Sci. USA 110, 19402–19407 (2013)

    Article  Google Scholar 

  13. Robertson-Tessi, M., Gillies, R.J., Gatenby, R.A., Anderson, A.R.: Impact of metabolic heterogeneity on tumor growth, invasion, and treatment outcomes. Cancer Res. 75, 1567–1579 (2015)

    Article  Google Scholar 

  14. Carmona-Fontaine, C., Deforet, M., Akkari, L., Thompson, C.B., Joyce, J.A., Xavier, J.B.: Metabolic origins of spatial organization in the tumor microenvironment. Proc. Nat. Acad. Sci. USA 114, 2934–2939 (2017)

    Article  Google Scholar 

  15. Hanahan, D., Weinberg, R.: Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011)

    Article  Google Scholar 

  16. Gatenby, R., Silva, A., Gillies, R., Frieden, B.: Adaptive therapy. Cancer Res. 69, 4894–4903 (2009)

    Article  Google Scholar 

  17. Broxterman, H., Pinedo, H., Kuiper, C., Kaptein, L., Schuurhuis, G., Lankelma, J.: Induction by verapamil of a rapid increase in ATP consumption in multidrug-resistant tumor cells. FASEB J. 2, 2278–2282 (1988)

    Google Scholar 

  18. Harada, D., Takigawa, N., Ochi, N., Ninomiya, T., Yasugi, M., Kubo, T., Takeda, H., Ichihara, E., Ohashi, K., Takata, S., Tanimoto, M., Kiura, K.: JAK2-related pathway induces acquired erlotinib resistance in lung cancer cells harboring an epidermal growth factor receptor-activating mutation. Cancer Sci. 103, 1795–1802 (2012)

    Article  Google Scholar 

  19. Wang, Q., Cui, K., Espin-Garcia, O., Cheng, D., Qiu, X., Chen, Z., Moore, M., Bristow, R., Xu, W., Der, S., Liu, G.: Resistance to bleomycin in cancer cell lines is characterized by prolonged doubling time, reduced DNA damage and evasion of G2/M arrest and apoptosis. PLoS ONE 8, e82363 (2013)

    Article  Google Scholar 

  20. Abercrombie, M.: Contact inhibition and malignancy. Nature 281, 259–262 (1979)

    Article  Google Scholar 

  21. Sherratt, J.: Wavefront propagation in a competition equation with a new motility term modelling contact inhibition between cell populations. Proc. R. Soc. A. 456, 2365–2386 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sherratt, J., Chaplain, M.: A new mathematical model for avascular tumour growth. J. Math. Biol. 43, 291–312 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Bertsch, M., Hilhorst, D., Izuhara, H., Mimura, M.: A nonlinear parabolic-hyperbolic system for contact inhibition of cell-growth. Diff. Equ. Appl. 4, 137–157 (2012)

    Google Scholar 

  24. Bertsch, M., Hilhorst, D., Izuhara, H., Mimura, M., Wakasa, T.: Travelling wave solutions of a parabolic-hyperbolic system for contact inhibition of cell-growth. Eur. J. Appl. Math. 26, 297–323 (2015)

    Google Scholar 

  25. Bertsch, M., Passo, R.D., Mimura, M.: A free boundary problem arising in a simplified tumour growth model of contact inhibition. Interfaces Free Bound. 12, 235–250 (2010)

    Google Scholar 

  26. Murray, J.D.: Mathematical Biology. Springer, New York (1993)

    Book  MATH  Google Scholar 

  27. Maezawa, H., Wong, K., Urano, M.: Radiosensitivity of mouse skin epithelial cell line established in serum-free culture: an alternative to animal use. Int. J. Radiat. Oncol. Biol. Phys. 24, 533–541 (1992)

    Google Scholar 

  28. Gatenby, R., Gawlinski, E.: A reaction-diffusion model of cancer invasion. Cancer Res. 56, 5745–5733 (1996)

    Google Scholar 

  29. Kolmogorov, A., Petrovskii, I., Piscounov, N.: A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem. Bull. Moscow Univ. Math. Mech. 1, 1–25 (1937)

    Google Scholar 

  30. Benga, G.: Basic studies on gene therapy of human malignant melanoma by use of the human interferon \(\beta \)-gene entrapped in cationic multilamellar liposomes.: 1. morphology and growth rate of six melanoma cell lines used in transfection experiments with the human interferon \(\beta \)-gene. J. Cell. Mol. Med. 5, 402–408 (2001)

    Google Scholar 

  31. Walenta, S., Wetterling, M., Lehrke, M., Schwickert, G., Sundfør, K., Rofstad, E., Mueller-Klieser, W.: High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res. 60, 916–921 (2000)

    Google Scholar 

  32. Foo, J., Michor, F.: Evolution of acquired resistance to anti-cancer therapy. J. Theor. Biol. 355, 10–20 (2014)

    Article  Google Scholar 

  33. Pisco, A.O., Huang, S.: Non-genetic cancer cell plasticity and therapy-induced stemness in tumour relapse: what does not kill me strengthens me. Br. J. Cancer 112, 1725–1732 (2015)

    Google Scholar 

  34. Weiner, R., Schmitt, B., Podhaisky, H.: ROWMAP—a ROW-code with Krylov techniques for large stiff ODEs. Appl. Numer. Math. 25, 303–319 (1997)

    Google Scholar 

  35. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 251–265 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author acknowledges funding for his postdoc position at the University of Exeter from AstraZeneca (Cambridge, UK). Thanks to Mark Hewlett and Bogna Pawłowska for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Rashkov .

Editor information

Editors and Affiliations

Appendix

Appendix

Here is a brief summary of the numerical method used to solve Eqs. 711. The main challenge is the treatment of the non-linear flux term. For the 1D problems P1 and P2, the flux term is to rewritten as in [21]

$$\begin{aligned} \frac{\partial }{\partial x}\left( \frac{u}{u+v}\frac{\partial }{\partial x}(u+v)\right) = \frac{u}{u+v}\cdot \frac{\partial ^2}{\partial x^2}(u +v ) +\frac{\partial }{\partial x}(u +v )\cdot \frac{\partial }{\partial x}\left( \frac{u}{u+v} \right) \end{aligned}$$
(15)

and then the equations are integrated in time using the ROWMAP solver [34].

For the 2D problem, a variational formulation scheme is used to discretise the equations in space with Lagrangian P2 finite elements. The non-linear system is integrated in the software environment FreeFem++ [35] by a fully implicit Euler scheme, and the equations are solved iteratively at every time step by Newton’s method. For this purpose, the non-linear diffusion term is approximated as follows for a test function \(\psi \in H^1(\varOmega )\). The divergence theorem employing the homogeneous Neumann boundary conditions for \(u_j\) gives

$$\begin{aligned} \int _\varOmega \psi \nabla \cdot \left( \frac{u_j(\sum _{i=0}^2\nabla u_i)}{\sum _{i=0}^2 u_i}\right) \,dx = - \int _\varOmega \frac{u_j(\sum _{i=0}^2 \nabla u_i)}{\sum _{i=0}^2 u_i}\nabla \psi \,dx :=-\int _\varOmega F_j\nabla \psi \,dx. \end{aligned}$$
(16)

In order to use Newton’s method for the solution of Eqs. 711, \(F_j\) in Eq. 16 is expanded in a Taylor series. For a small perturbation \(\tilde{u}_i\) in \(u_i\), \(F_0\), for example, is

$$\begin{aligned} F_0(u_0+\tilde{u}_0, u_1+ & {} \tilde{u}_1,u_2+\tilde{u}_2) \approx \frac{( u_1+ u_2)(\sum _{i=0}^2\nabla u_i)\tilde{u}_0}{(\sum _{i=0}^2 u_i)^2} - \frac{ u_0(\sum _{i=0}^2\nabla u_i)\tilde{u}_1}{( \sum _{i=0}^2 u_i)^2}\\&- \frac{ u_0(\sum _{i=0}^2 \nabla u_i)\tilde{u}_2}{(\sum _{i=0}^2 u_i)^2} + \frac{ u_0(\sum _{i=0}^2\nabla \tilde{u}_i)}{ \sum _{i=0}^2 u_i} + \, \text{ higher } \text{ order } \text{ terms }. \end{aligned}$$

A similar approximation is made for the other two terms \(F_1,F_2\).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Rashkov, P. (2018). Competition for Resources and Space Contributes to the Emergence of Drug Resistance in Cancer. In: Georgiev, K., Todorov, M., Georgiev, I. (eds) Advanced Computing in Industrial Mathematics. Studies in Computational Intelligence, vol 728. Springer, Cham. https://doi.org/10.1007/978-3-319-65530-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65530-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65529-1

  • Online ISBN: 978-3-319-65530-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics