Skip to main content

Basics of Semiconductor and Spin Physics

  • Chapter
  • First Online:
Spin Physics in Semiconductors

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 157))

Abstract

This introductory chapter is mainly addressed to readers new to the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A special care is taken to indicate who has done what and when, since there exists much confusion on these matters in the current literature.

  2. 2.

    It is often stated that the origin of spin-orbit interaction is relativistic and quantum-mechanical. This is true in the sense that it can be derived from the relativistic Dirac equation by keeping terms on the order of \(1/c^2\). However, the above formula \(\varvec{B} = (1/c)\varvec{E} \times \varvec{v}\) is not relativistic: one does not need the theory of relativity to understand that, when moving with respect to a stationary charge, a current, and hence a magnetic field will be seen. Given, that the electron has a magnetic moment, the spin-orbit interaction follows directly. It is also not really quantum-mechanical: a classical object having a magnetic moment would experience the same interaction. The only place where quantum mechanics enters, is the value of the electron magnetic moment and, of course, the fact that the electron spin is 1/2.

  3. 3.

    In fact the interaction energy derived in this simple-minded way should be cut into half (the “Thomas’s one half” [6]) if one takes properly into account that, because of the electron acceleration in the electric field of the nucleus, its moving frame is not inertial. This finding, made in 1926, resolved the factor of 2 discrepancy between the measured and previously calculated fine structure splittings.

  4. 4.

    Interestingly, General Relativity predicts spin-orbit effects (on the order of \((v/c)^2\)) in the motion of planets. Thus the “spin” of the Earth should make a slow precession around its orbital angular momentum.

  5. 5.

    A small part of the excited electrons can emit photons before loosing their energy by thermalization. The studies of the spectrum and polarization properties of this so-called hot luminescence reveal interesting and unusual physics, see [10, 11].

  6. 6.

    More accurately, one should use the Hamiltonian in (1.3), which takes care of the warping of iso-energetic surfaces. In fact, the energy spectrum depends on the growth direction, and on the orientation of the vector \(\varvec{p}\) in the xy plane with respect to the crystal axes. However the general properties of the spectrum are the same.

  7. 7.

    In most of the current literature (as well as in some chapters of this book) this expression is called “Rashba term” or “Rashba interaction”. Rather, it should be referred to as Rashba-Sheka term. There is no good reason for ignoring one of the authors, it is unfair and incorrect.

  8. 8.

    In many publications [28, 29] are erroneously cited as the origin of the “Rashba term” in 2D. Meanwhile, in [28] (but not in the better known [29]) the authors correctly attribute this result to Vasko [25], although do not mention the work of Ohkawa and Uemura [24].

  9. 9.

    It has become a bad habit to label the two terms as “Rashba” and “Dresselhaus” terms, without any good reason or justification: the results given by (1.9 - 1.11), for 2D structures were not known prior to the publications in [24, 25, 30] and neither Rashba, nor Dresselhaus have introduced any linear in \(\varvec{p}\) terms for the 2D case (Rashba and Sheka have derived such terms in bulk wurtzite-type crystals, Dresselhaus had no linear terms at all). The normal practice is to give credit to those who have in fact obtained previously unknown results.

  10. 10.

    The reason is that the z projection of the spin is rotated by both x and y components of the random field, while the x spin projection is influenced by the y component only, since the z component of the random field is zero.

  11. 11.

    In fact, the normal spin component will slowly decay because of the small cubic in \(\varvec{p}\) Dresselhaus terms, which were neglected in deriving (1.12). Experimentally, a \(\sim 20\) times suppression of the relaxation rate for the z spin component in \(\langle 110\rangle \) quantum wells was observed by Ohno et al. [42].

  12. 12.

    Bernevig et al. [31] have explained their result as a consequence of the exact SU(2) symmetry in special cases and used the Keldysh formalism. Here a more pedestrian qualitative explanation is given.

  13. 13.

    I thank S. Ganichev and E. Ivchenko for an illuminating discussion of this issue.

  14. 14.

    Probably, because announcing a new effect is more exciting than digging into literature to find out that it is already known.

  15. 15.

    Some of the labels used are: current-induced spin polarization (CISP), inverse spin-galvanic effect (ISGE), current-induced spin accumulation (CISA), magneto-electric effect (MEE), kinetic magneto-electric effect (KMEE), Edelstein effect (EE), inverse Edelstein effect (IEE), and even Rashba-Edelstein effect (REE).

  16. 16.

    The concept of a mean nuclear magnetic field is well justified for electrons in semiconductors, either moving freely in the conduction band or localized on a shallow donor. Thus, for a shallow donor in GaAs the Bohr radius is around 10 nm, so that about \(10^5\) lattice nuclei are simultaneously seen by a localized electron.

  17. 17.

    As it was pointed out in Sect. 1.2, the magnetic dipole-dipole interaction between electron spins can be usually neglected. Given that a similar interaction between nuclear spins is about a million times smaller, it may seem strange that this interaction may be of any importance. The answer comes when we consider the extremely long time scale in the nuclear spin system (seconds or more) compared to the characteristic times for the electron spin system (nanoseconds or less).

  18. 18.

    It should be noticed that obtaining a high degree of nuclear polarization in solids is a very desirable goal for experimental nuclear and particle physics.

References

  1. R.W. Wood, A. Ellett, Phys. Rev. 24, 243 (1924)

    Article  ADS  Google Scholar 

  2. W. Hanle, Z. Physik 30, 93 (1924)

    Article  ADS  Google Scholar 

  3. J. Brossel, A. Kastler, Compt. Rend. Hebd. Acad. Sci. 229, 1213 (1949)

    Google Scholar 

  4. A. Kastler, Science 158, 214 (1967)

    Article  ADS  Google Scholar 

  5. G. Lampel, Phys. Rev. Lett. 20, 491 (1968)

    Article  ADS  Google Scholar 

  6. L.H. Thomas, Nature 117, 514 (1926)

    Article  ADS  Google Scholar 

  7. P.Y. Yu, M. Cardona, Fundamental of Semiconductors, 3rd edn. (Springer, Berlin, 2001)

    Google Scholar 

  8. J.M. Luttinger, Phys. Rev. 102, 1030 (1956)

    Article  ADS  Google Scholar 

  9. M.I. Dyakonov, V.I. Perel, Zh Eksp, Teor. Fiz. 60, 1954 (1971). Sov. Phys. JETP 33, 1053 (1971)

    Google Scholar 

  10. V.D. Dymnikov, M.I. Dyakonov, V.I. Perel, Zh Eksp, Teor. Fiz. 71, 2373 (1976). Sov. Phys. JETP 44, 1252 (1976)

    Google Scholar 

  11. D.N. Mirlin, in Optical Orientation, ed. by F. Meier, B.P. Zakharchenya (North Holland, Amsterdam, 1984), p. 133

    Chapter  Google Scholar 

  12. M.I. Dyakonov, A.V. Khaetskii, Zh Eksp, Teor. Fiz. 82, 1584 (1982). Sov. Phys. JETP 55, 917 (1982)

    Google Scholar 

  13. M.I. Dyakonov, A.V. Khaetskii, Pis’ma Zh. Eksp. Teor. Fiz. 33, 110 (1981); Sov. Phys. JETP Lett. 33, 115 (1981)

    Google Scholar 

  14. M.I. Dyakonov, V.I. Perel, in Optical Orientation, ed. by F. Meier, B.P. Zakharchenya (North Holland, Amsterdam, 1984), p. 15

    Google Scholar 

  15. G. Dresselhaus, Phys. Rev. 100, 580 (1955)

    Article  ADS  Google Scholar 

  16. E.I. Rashba, V.I. Sheka, Fiz. Tverd. Tela, 1, 162 (1959); For English translation, see http://iopscience.iop.org/1367-2630/17/5/050202/media

  17. M.L. Glasser, J. Phys. Chem. Solids 10, 229 (1959)

    Article  ADS  Google Scholar 

  18. R.C. Casella, Phys. Rev. 114, 1514 (1959)

    Article  ADS  Google Scholar 

  19. R.C. Casella, Phys. Rev. Lett. 5, 371 (1960)

    Article  ADS  Google Scholar 

  20. E.I. Rashba, Sov. Phys. Solid. State 2, 1109 (1960)

    Google Scholar 

  21. E.I. Rashba, Sov. Phys. Uspekhi 7, 823 (1965)

    Article  ADS  Google Scholar 

  22. M.I. Dyakonov, V.A. Marushchak, V.I. Perel, A.N. Titkov, Zh Eksp, Teor. Fiz., 90, 1123 (1986). Sov. Phys. JETP 63, 655 (1986)

    Google Scholar 

  23. G.L. Bir, G.E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, New York, 1974)

    Google Scholar 

  24. F.J. Ohkawa, Y.J. Uemura, J. Phys. Soc. Jpn. 37, 1325 (1974)

    Article  ADS  Google Scholar 

  25. F.T. Vasko, Sov. Phys. JETP Lett. 30, 541 (1979)

    ADS  Google Scholar 

  26. G. Lommer, F. Malcher, U. Rossler, Phys. Rev. Lett. 60, 728 (1988)

    Article  ADS  Google Scholar 

  27. E.A. de Andrada e Silva, G.C. La Rocca, F. Bassani Phys. Rev. B 55, 16293 (1997)

    Google Scholar 

  28. YuA Bychkov, E.I. Rashba, Pis’ma Zh. Eksp. Teor. Fiz. 39, 66 (1984); Sov. Phys. JETP Lett. 39, 78 (1984)

    Google Scholar 

  29. Y.A. Bychkov, E.I. Rashba, J. Phys. C 17, 6039 (1984)

    Article  ADS  Google Scholar 

  30. M.I. Dyakonov, Yu.V. Kachorovskii, Fiz.Techn.Poluprov. 20, 178 (1986); Sov. Phys. Semicond. 20, 110 (1986)

    Google Scholar 

  31. B.A. Bernevig, J. Orenstein, S.-C. Zhang, Phys. Rev. Lett. 97, 236601 (2006)

    Article  ADS  Google Scholar 

  32. J.D. Koralek, C.P. Weber, J. Orenstein1, B.A. Bernevig, S-C. Zhang, S. Mack, D.D. Awschalom, Nature 458, 610 (2009)

    Google Scholar 

  33. M.I. Dyakonov, M.B. Lifshits, Proc. 28th Int. Conf. Phys. Semicond., Book of abstracts, p. 585 (2006) (unpublished)

    Google Scholar 

  34. R.J. Elliott, Phys. Rev. 96, 266 (1954)

    Article  ADS  Google Scholar 

  35. Y. Yafet, in Solid State Physics, vol. 14, ed. by F. Seits, D. Turnbull (Academic, New York, 1963), p. 1

    Google Scholar 

  36. M.I. Dyakonov, V.I. Perel, Fizika Tverdogo Tela, 13, 3581 (1971); Sov. Phys. Solid State 13, 3023 (1972)

    Google Scholar 

  37. E.M. Gershenzon, N.M.Pevin, M.S. Fogelson, Fiz. Tekh. Poluprov. 3, 748 (1969); Sov. Phys. Semicond. 3, 634 (1969)

    Google Scholar 

  38. G.I. Bir, A.G. Aronov, G.E. Pikus, Zh Eksp, Teor. Fiz. 69, 1382 (1975). Sov. Phys. JETP 42, 705 (1976)

    Google Scholar 

  39. D.J. Hilton, C.L. Tang, Phys. Rev. Lett. 89, 146601 (2002)

    Article  ADS  Google Scholar 

  40. M.I. Dyakonov, A.V. Khaetskii, Zh Eksp, Teor. Fiz. 86, 1843 (1984). Sov. Phys. JETP 59, 1072 (1984)

    Google Scholar 

  41. E.L. Ivchenko, Fiz. Tverd. Tela, 15, 1566 (1973); Sov. Phys. Solid State 15, 1048 (1973)]

    Google Scholar 

  42. Y. Ohno, R. Terauchi, T. Adachi, F. Matsukura, H. Ohno, Phys. Rev. Lett. 83, 4196 (1999)

    Article  ADS  Google Scholar 

  43. N.S. Averkiev, L.E. Golub, Phys. Rev. B 60, 15582 (1999)

    Article  ADS  Google Scholar 

  44. R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, Berlin, 2003)

    Book  Google Scholar 

  45. J.A. Gupta, X. Peng, A.P. Alivisatos, D.D. Awschalom, Phys. Rev. B 59, 10421 (1999)

    Article  ADS  Google Scholar 

  46. M.I. Dyakonov, V.I. Perel, Pis’ma Zh. Eksp. Teor. Fiz. 13, 657 (1971); Sov. Phys. JETP Lett. 13, 467 (1971)]

    Google Scholar 

  47. M.I. Dyakonov, V.I. Perel, Phys. Lett. A 35, 459 (1971)

    Article  ADS  Google Scholar 

  48. A.A. Bakun, B.P. Zakharchenya, A.A. Rogachev, M.N. Tkachuk, V.G. Fleisher, Pis’ma Zh. Eksp. Teor. Fiz. 40, 464 (1984); Sov. Phys. JETP Lett. 40, 1293 (1984)

    Google Scholar 

  49. J.E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  50. Y.K. Kato, R.C. Myers, A.C. Gossard, D.D. Awschalom, Science 306, 1910 (2004)

    Article  ADS  Google Scholar 

  51. J. Wunderlich, B. Kaestner, J. Sinova, T. Jungwirth, Phys. Rev. Lett. 94, 047204 (2005)

    Article  ADS  Google Scholar 

  52. M.I. Dyakonov, Phys. Rev. Lett. 99, 126601 (2007)

    Article  ADS  Google Scholar 

  53. M.B. Lifshits, M.I. Dyakonov, Phys. Rev. Lett. 103, 186601 (2009)

    Article  ADS  Google Scholar 

  54. E.L. Ivchenko, G.E. Pikus, Pis’ma Zh. Eksp. Teor. Fiz. 27, 640 (1978); Sov. Phys. JETP Lett. 27, 604 (1978)

    Google Scholar 

  55. L.E. Vorob’ev, E.L. Ivchenko, G.E. Pikus, I.I. Farbstein, V.A. Shalygin, A.V. Sturbin, Pis’ma Zh. Eksp. Teor. Fiz. 29, 485 (1979); Sov. Phys. JETP Lett. 29, 441 (1979)

    Google Scholar 

  56. F.T. Vasko, N.A. Prima, Fiz. Tverd. Tela 21, 1734 (1979). Sov. Phys. Solid State 21, 994 (1979)

    Google Scholar 

  57. L.S. Levitov, YuV Nazarov, G.M. Eliashberg, Zh Eksp, Teor. Fiz. 88, 229 (1985). Sov. Phys. JETP 61, 133 (1985)

    Google Scholar 

  58. V.M. Edelstein, Solid State Commun. 73, 233 (1990)

    Article  ADS  Google Scholar 

  59. A.G. Aronov, YuB Lyanda-Geller, G.E. Pikus, Zh Eksp, Teor. Fiz. 100, 973 (1991). Sov. Phys. JETP 73, 537 (1991)

    Google Scholar 

  60. AYu. Silov, P.A. Blajnov, J.H. Wolter, R. Hey, K.H. Ploog, N.S. Averkiev, Appl. Phys. Lett. 85, 5929 (2004)

    Article  ADS  Google Scholar 

  61. S.D. Ganichev, S.N. Danilov, Petra Schneider, V.V. Bel’kov, L.E. Golub, W. Wegscheider, D. Weiss, W. Prettl, J. Magn., Magn. Materials 300, 127 (2006), arXiv:0403641 (2004)

  62. Y.K. Kato, R.C. Myers, A.C. Gossard, D.D. Awschalom, Phys. Rev. Lett. 93, 176601 (2004)

    Article  ADS  Google Scholar 

  63. E.L. Ivchenko, YuB Lyanda-Geller, G.E. Pikus, Pis’ma Zh. Eksp. Teor. Fiz. 50, 156 (1989); Sov. Phys. JETP Lett. 50, 175 (1989)

    Google Scholar 

  64. S.D. Ganichev, E.L. Ivchenko, V.V. Bel’kov, S.A. Tarasenko, M. Sollinger, D. Weiss, W. Wegscheider, W. Prettl, Nature (Lond.) 417, 153 (2002)

    Article  ADS  Google Scholar 

  65. V.I. Belinicher, Phys. Lett. A 66, 213 (1978)

    Article  ADS  Google Scholar 

  66. V.M. Asnin, A.A. Bakun, A.M. Danishevskii, E.L. Ivchenko, G.E. Pikus, A.A. Rogachev, Pis’ma Zh. Eksp. Teor. Fiz. 28, 80 (1978); Sov. Phys. JETP Lett. 28, 74 (1978)

    Google Scholar 

  67. S.D. Ganichev, E.L. Ivchenko, S.N. Danilov, J. Eroms, W. Wegscheider, D. Weiss, W. Prettl, Phys. Rev. Lett. 86, 4358 (2001)

    Article  ADS  Google Scholar 

  68. M.I. Dyakonov, V.I. Perel, V.I. Berkovits, V.I. Safarov, Zh Eksp, Teor. Fiz. 67, 1912 (1974). Sov. Phys. JETP 40, 950 (1975)

    Google Scholar 

  69. V.G. Fleisher, I.A. Merkulov, in Optical Orientation, ed. by F. Meier, B.P. Zakharchenya (North Holland, Amsterdam, 1984), p. 173

    Chapter  Google Scholar 

  70. A.I. Ekimov, V.I. Safarov, Pis’ma Zh. Eksp. Teor. Fiz. 15, 257 (1972); Sov. Phys. JETP Lett. 15, 179 (1972)

    Google Scholar 

  71. J.M. Kikkawa, D.D. Awschalom, Science 287, 473 (2000)

    Article  ADS  Google Scholar 

  72. G. Salis, D.T. Fuchs, J.M. Kikkawa, D.D. Awschalom, Y. Ohno, H. Ohno, Phys. Rev. Lett. 86, 2677 (2001)

    Article  ADS  Google Scholar 

  73. X. Qian, Y. Ji, V. Umansky, Phys. Rev. B 93, 035302 (2016)

    Article  ADS  Google Scholar 

  74. A.G. Redfield, Phys. Rev. 98, 1787 (1955)

    Article  ADS  Google Scholar 

  75. A. Abragam, The Principles of Nuclear Magnetism (Oxford University press, Oxford, 1983)

    Google Scholar 

  76. N. Bloembergen, Physica 20, 1130 (1954)

    Article  ADS  Google Scholar 

  77. N. Bloembergen, Physica 25, 386 (1949)

    Article  ADS  Google Scholar 

  78. A. Overhauser, Phys. Rev. 92, 411 (1953)

    Article  ADS  Google Scholar 

  79. T.R. Carver, C.P. Slichter, Phys. Rev. 92, 212 (1953)

    Article  ADS  Google Scholar 

  80. W.A. Anderson, R. Freeman, J. Chem. Phys. 37, 411 (1962)

    Article  Google Scholar 

  81. R. Kaiser, J. Chem. Phys. 39, 2435 (1962)

    Article  ADS  Google Scholar 

  82. D. Neuhaus, M. Williamson, The Nuclear Overhauser Effect in Structural and Conformational Analysis, 2nd edn. (Wiley, New York, 2000)

    Google Scholar 

  83. M.I. Dyakonov, V.I. Perel, Pis’ma Zh. Eksp. Teor. Fiz. 16, 563 (1972); Sov. Phys. JETP Lett. 16, 398 (1972)

    Google Scholar 

  84. M.I. Dyakonov, Zh Eksp, Teor. Fiz. 67, 1500 (1974). Sov. Phys. JETP 38, 177 (1974)

    Google Scholar 

  85. W. Farah, D. Scalbert, M.I. Dyakonov, W. Knap, Phys. Rev. B 57, 4713 (1998)

    Article  ADS  Google Scholar 

  86. E.N. Fortson, B.R. Heckel, Phys. Rev. Lett. 59, 1281 (1987)

    Article  ADS  Google Scholar 

  87. W.M. Klipstein, S.K. Lamoreaux, E.N. Fortson, Phys. Rev. Lett. 76, 2266 (1996)

    Article  ADS  Google Scholar 

  88. J.J. Baumberg, D.D. Awschalom, N. Samarth, J. Appl. Phys. 75, 6199 (1994)

    Article  ADS  Google Scholar 

  89. N.I. Zheludev, M.A. Brummell, A. Malinowski, S.V. Popov, R.T. Harley, Solid State Commun. 89, 823 (1994)

    Article  ADS  Google Scholar 

  90. A.G. Aronov, Pis’ma Zh. Eksp. Teor. Fiz. 24, 37 (1976); Sov. Phys. JETP Lett. 24, 32 (1976)

    Google Scholar 

  91. R.H. Silsbee, Bull. Mag. Res. 2, 284 (1980)

    Google Scholar 

  92. M. Johnson, R.H. Silsbee, Phys. Rev. Lett. 55, 1790 (1985)

    Article  ADS  Google Scholar 

  93. M. Dobers, K. von Klitzing, J. Schneider, G. Weinmann, K. Ploog, Phys. Rev. Lett. 61, 1650 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Dyakonov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dyakonov, M.I. (2017). Basics of Semiconductor and Spin Physics. In: Dyakonov, M. (eds) Spin Physics in Semiconductors. Springer Series in Solid-State Sciences, vol 157. Springer, Cham. https://doi.org/10.1007/978-3-319-65436-2_1

Download citation

Publish with us

Policies and ethics