Skip to main content

Abstract

Neutrino astronomy is a lively discipline that has born at the cross road of particle physics, nuclear physics, and astrophysics. Many low-energy neutrino observatories have demonstrated the possibility of investigating the functioning of the Sun, the terrestrial radiactivity and crucial astrophysical phenomena as the gravitational collapse. There are mounting evidences that extraterrestrial high-energy neutrinos are observable. This impacts strongly on our understanding of the high-energy phenomena from the cosmos, and the dataset and the sensitivity continue to improve. In this chapter, the status of the investigations of neutrino radiation is outlined, aiming to provide the reader with a unified description of this discipline that covers its main observational and theoretical aspects. We collect, for a readership at Ph.D. level, the most relevant formulae, expectations, and information concerning neutrino astronomy and astrophysics. Connections with other disciplines and selected applications to particle physics are discussed. Each section begins with an overview of the material included and a brief annotated bibliographical selection to books and review papers, aimed to favor “staged access” into the vast scientific literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Sometimes one can probe the effect of these particles (only) indirectly: e.g., in cosmology, it is possible to reveal the imprint of the presence of neutrinos on the distribution of visible matter.

  2. 2.

    This is a factor or function smaller than one that describes the deviation of the detector from the ideal performances, and in particular the possibility that some events are lost.

  3. 3.

    Conversely, it does not imply that this intermediate range of energies should be considered uninteresting: In particular, it is hoped that a certain type of dark matter particle could annihilate or decay in celestial bodies (such as the Earth, the Sun or the Galactic center), thereby producing neutrino signals of similar energies and characterized by a well-defined direction.

  4. 4.

    As we will show later, the description of neutrino oscillations in matter implies effects that are linear in \(G_F\) rather than quadratic. The reason is that these effects concern the amplitude of oscillation rather than the oscillation probability.

  5. 5.

    In the standard model language, it could be advantageous to use the term “quarkonic” rather than hadronic. This is not only matter of semantics; indeed the various analogies between quarks and leptons are a key aspect of modern understanding of particles.

  6. 6.

    The most sensitive investigation involve the search of the nuclear transition where a nucleus changes its electric charge Z by two units by emitting two electrons \((A,Z)\rightarrow (A,Z+2)+2 e^-\), called neutrinoless double beta decay.

  7. 7.

    All of them will be discussed in the following.

  8. 8.

    In this section, for maximum clarity, we use the symbol “hat”, i.e., \(\hat{}\), in order to distinguish the operators. A very essential introduction to neutrino wavefunction can be found in the Appendix 2.

  9. 9.

    It is common to write \(n_e=\rho _e N_A\) where \(\rho _e\) is the electron molar density and \(N_A\) the Avogadro number. For neutral matter, \(\rho _e=\rho _p=Y_p \rho \), where \(Y_p\) is the proton fraction and \(\rho \) the density.

  10. 10.

    We use the Mandelstam variables stu here that in the example of a muon neutrinos scattering onto a nucleon N, namely \(\nu _\mu (k) + N(p) \rightarrow \mu (k')+X(p')\), are given by \(s=(k+p)^2\), \(t=(k-k')^2\equiv -Q^2\), \(u=(p-k')^2\). Moreover we adopt the usual definitions \(q=k-k'\) (4-momentum transfer) \(x=Q^2/(2 pq)\) and \(y=pq/pk\). Note that \(s\approx 2 pk=2 m_N E_\nu \), \(Q^2=2 pq x=2 x y pk\approx s \, x y \).

  11. 11.

    The appearance of the factor half is due to the identity, \(e^{i (E_1-E_j)t }-1= 2 i \sin \phi _{j1} e^{ i \varphi _{j1} }\).

  12. 12.

    The exception is the (planned) telescopes aiming to use the terrestrial atmosphere or its surface to convert the highest energy neutrinos into observable radiation that we discuss later.

  13. 13.

    Only in the restricted sense discussed above, one could consider that IceCube is bigger.

  14. 14.

    The detection of neutrons is not a problem for Borexino that is based on an ultra-pure scintillator or for SNO that used with special apparata for this purpose.

  15. 15.

    However, it is not easy to gather large masses of heavy water for this purpose and there are no plans to operate a similar type detector in the near future.

  16. 16.

    This is the first type of signal that has been considered and studied.

  17. 17.

    This is measured, e.g., in cm, so that the product \(x=\rho \times R\) is measured in g/cm\(^2\).

  18. 18.

    We thank F. Mantovani for the help in the preparation of this paragraph.

  19. 19.

    Note that, assuming secular equilibrium, the product \(d\varGamma _{i,k}^ {\text {tot}}(\mathbf {r})=dN_x(\mathbf {r}) R_i I_{i,k}/\tau _x\) gives a contribution to the total decay rate of the species i in the specific channel k.

  20. 20.

    We note incidentally that, in BSE models, uranium and thorium are expected to be the main radiogenic contributors to the terrestrial heat.

  21. 21.

    It should be remarked that the evidences of three-flavor neutrino oscillations collected to date have been obtained by studying “natural” neutrino beams and not artificial ones.

  22. 22.

    We follow the definition of “low energy” given in section “Neutrino Interactions and Properties: Generalities”.

  23. 23.

    It is not expected that they have a measurable chemical potential (i.e., a lepton asymmetry) that distinguishes neutrinos from antineutrinos, and there is no sign of it from the data.

  24. 24.

    It should be remarked however that the analysis of the primordial helium-4 data is recognized to be difficult and the results are not yet uncontroversial.

  25. 25.

    We thank G. Bellini for the help in the preparation of this paragraph.

  26. 26.

    Actually, it is expected that only 10% of these reactions will take place due to absence of convection in the center of our Suns.

  27. 27.

    In semiclassical approximation, the exponent of the tunnel effect is given by \(-2 \int _0^{r_ {\text {cl}}} \sqrt{2\mu (V(r)-E)} dr\), where E is the energy, \(\mu =m_p/2\) the reduced mass of the system, and \(r_ {\text {cl}}\) the classical point of inversion defined by \(V(r_ {\text {cl}})=E\).

  28. 28.

    The term “neutrino telescopes” emphasizes the astronomical applications; however, they are also named, depending upon the context, detectors, observatories or experiments. Sometimes in the literature the term “neutrino telescopes” is used to refer only to high-energy neutrinos or only to low-energy neutrinos: We do not follow this usage, to stress that we observe the cosmos with neutrinos of different energies/frequencies, just as it happens for ordinary (photon) astronomy.

  29. 29.

    In water Cherenkov detectors, electrons with minimum velocity \(\beta >0.75\) can be in principle detected and in scintillators the formal energy threshold is still less. The true issue that fixes the lowest energy threshold that can be detected, is the presence of background events.

  30. 30.

    However, overall, only some 1000 events were collected and therefore the error in the measurement is still some times larger than the theoretical error on pp- and pep-neutrinos.

  31. 31.

    Moreover, heavy water is a transparent liquid and this allowed to adopt the Cherenkov detection technique.

  32. 32.

    With the term “delayed scenario” one refers to the scenario for the explosion put forward by Bethe and Wilson that incorporates the initial phase of intense neutrino luminosity discussed by Nadyozhin (this is also called “standard scenario” or “neutrino assisted explosion”).

  33. 33.

    For comparison, a uniform sphere of the same mass and radius, rotating with a period of 5 ms, has a rotational energy of \(1.3 \times 10^{51}\) erg; if it moves with a velocity of 1,000 km/s (as for the fastest observed pulsars) its translational energy is \(1.4 \times 10^{49}\) erg; if it is filled by a uniform magnetic field of \(10^{15}\) G (as for the strongest magnetars) it stores \(3 \times 10^{47}\) erg of magnetic energy.

  34. 34.

    The initial phases of emissions should be modeled in a different manner. For instance, \(\bar{\nu }_e\) derive from \(n+e^+\rightarrow p+\bar{\nu }_e\), and the luminosity \(L\sim N_n\ \sigma _{e^+ n} \ T_{e^+}^4\) is one order of magnitude larger than the late time luminosity for reasonable parameters.

  35. 35.

    In the past years, we had several debates on whether the data are in agreement among them and/or with the expectations. Nowadays, both questions are answered affirmatively, and there is a growing awareness of the presence of residual theoretical errors in the expectations.

  36. 36.

    Note that the sparse data from SN1987A have been used to extract a lot of useful information, and despite the large amount of work done already, it is not excluded that it will possible to perform further useful work of analysis with these data.

  37. 37.

    The same number of targets protons is in a detector of 29 kton with “LAB”, as used in SNO+. Scintillators have a better tagging of the events, but they have also an high background rate due to the interactions of atmospheric neutrinos on carbon nuclei via neutral currents.

  38. 38.

    In general neutrinos are created in the interactions of relativistic protons and nuclei, and for collisions with a gas, the target is also formed by protons and (mostly helium) nuclei. The dominant channel is expected to be pp interactions. Adding the (left implicit) contributions of pA, Ap and AA collisions is straightforward.

  39. 39.

    In this work we have chosen to characterize the normalization of a \(\nu \) point source as the flux (summed over all \(\nu \) types) above a minimum energy of \(E_{\nu , \mathrm{min}} =1\) TeV. The reason for this choice is that it allows an immediate comparison with the sources measured by TeV \(\gamma \)-ray telescopes, that are commonly stated as flux above \(E_{\gamma , \mathrm{min}} =1\) TeV. In case of negligible \(\gamma \) absorption one has \(\phi _\gamma \simeq \phi _\nu \). Since we consider power law fluxes, it is trivial to restate the normalization in other forms. As discussed later the km\(^3\) telescopes sensitivity peaks at \(E_\nu \sim 20\) TeV.

  40. 40.

    As an example, for \(\varOmega _\mathrm{m}=1\), \(\varOmega _\varLambda =0\) and \(\alpha =2\) the exact solution is \(z_h = (x -1 + \sqrt{1+2 \,x})/2\).

  41. 41.

    We thank A.  Palladino for the help in the preparation of this paragraph.

  42. 42.

    Atmospheric neutrinos contain only a very small fraction of \(\nu _\tau \) and \(\overline{\nu }_\tau \) created in the two body decay of the \(D_s^\pm \) mesons (bound states [\(c\overline{s}]\) or [\(s\overline{c}]\)) \(D_s^+ \rightarrow \nu _\tau \, \tau ^+ \rightarrow \nu _\tau \, \overline{\nu }_\tau + \cdots \).

  43. 43.

    In principle, we could detect only one (or few) neutrinos, but tightly correlated in time with other events, such as GW burst.

  44. 44.

    The hypothesis that these particles populate the Galactic halo with velocities below the escape velocity allows us to estimate that kinematics of nucleon recoil, leading to signals in the few keV region.

  45. 45.

    At cosmological distances, corrections should be applied. The average oscillations phase \( \varphi \) is \(\varDelta m^2_ {\text {new}} (c/H_0)/(4 E)\) times \(\xi (z_e)=\int _0^{z_e} dz /\left[ (1+z)^2 \sqrt{\varOmega _m (1+z)^3+\varOmega _\varLambda }\right] \) where \(z_e\) is the redshift when neutrino have been emitted [316]. The asymptotic value is \(\xi (\infty )=0.53\), the deviations from Hubble law amount to \(\xi (z_e)/z_e-1=-10\)% when \(z_e=0.1\).

  46. 46.

    This is always true for oscillations in the conventional sense and it is also the typical case in neutrino astronomy. The only practical exception are the Big-Bang neutrinos today.

References

  1. M.A. Markov, The Neutrino (Dubna, 1963)

    Google Scholar 

  2. J.N. Bahcall, Neutrino Astrophysics (Cambridge University Press, 1989)

    Google Scholar 

  3. M. Fukugita, T. Yanagida, Physics of Neutrinos and Applications to Astrophysics (Springer, 2003)

    Google Scholar 

  4. C. Giunti, C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics (Oxford University Press, 2007)

    Google Scholar 

  5. Z.-Z. Xing, S. Zhou, Neutrinos in Particle Physics, Astronomy and Cosmology (Zhejiang University Press, 2011)

    Google Scholar 

  6. F. Halzen, A.D. Martin, Quarks and Leptons: An Introductory Course in Modern Particle Physics (Wiley, 1984)

    Google Scholar 

  7. W. Greiner, B. Muller, Gauge Theory of Weak Interactions (Springer, 1993)

    Google Scholar 

  8. L.B. Okun, Leptons and Quarks (North Holland, 1982)

    Google Scholar 

  9. T.K. Gaisser, Cosmic Rays and Particle Physics (Cambridge University Press, 1990)

    Google Scholar 

  10. J. Lesgourgues, G. Mangano, G. Miele, S. Pastor, Neutrino Cosmology (Cambridge University Press, 2013)

    Google Scholar 

  11. V.S. Berezinskii, S.V. Bulanov, V.A. Dogiel, V.L. Ginzburg, V.S. Ptuskin (eds.), Astrophysics of Cosmic Rays (North-Holland, Amsterdam, 1990)

    Google Scholar 

  12. A. De Angelis, M.J.M. Pimenta, Introduction to Particle and Astroparticle Physics: Questions to the Universe (Springer, 2015)

    Google Scholar 

  13. M. Spurio, Particles and Astrophysics: A Multi-messenger Approach (Springer, 2015)

    Google Scholar 

  14. C.E. Rolfs, W.S. Rodney, Cauldrons in the Cosmos (University of Chicago Press, 1988)

    Google Scholar 

  15. G.G. Raffelt, Stars as Laboratories for Fundamental Physics: The Astrophysics of Neutrinos, Axions, and Other Weakly Interacting Particles (University of Chicago Press, 1996)

    Google Scholar 

  16. J.W.F. Valle, J.C. Romão, Neutrinos in High Energy and Astroparticle Physics (Wiley-VCH, 2015)

    Google Scholar 

  17. K. Freeman, G. McNamara, In Search of Dark Matter (Springer 2006)

    Google Scholar 

  18. G. Bertone, Particle Dark Matter (Cambridge University Press, 2013)

    Google Scholar 

  19. M. L’Annunziata, Handbook of Radioactivity Analysis (Elsevier Science, 2012), https://books.google.it/books?id=mAfH8KEH3j0C

  20. B.M. Pontecorvo, Pages in the development of neutrino physics. Sov. Phys. Usp. 26, 1087 (1983)

    Article  ADS  Google Scholar 

  21. A. Strumia, F. Vissani, Neutrino masses and mixings and..., hep-ph/0606054

    Google Scholar 

  22. M.C. Gonzalez-Garcia, M. Maltoni, Phenomenology with massive neutrinos. Phys. Rep. 460, 1 (2008)

    Article  ADS  Google Scholar 

  23. C.H. Llewellyn, Smith, Neutrino reactions at accelerator energies. Phys. Rep. 3, 261 (1972)

    Article  ADS  Google Scholar 

  24. J.A. Formaggio, G.P. Zeller, From eV to EeV: neutrino cross sections across energy scales. Rev. Mod. Phys. 84, 1307 (2012)

    Article  ADS  Google Scholar 

  25. A.B. McDonald, C. Spiering, S. Schonert, E.T. Kearns, T. Kajita, Astrophysical neutrino telescopes. Rev. Sci. Instrum. 75, 293 (2004)

    Article  ADS  Google Scholar 

  26. G. Fiorentini, M. Lissia, F. Mantovani, Geo-neutrinos and Earth’s interior. Phys. Rep. 453, 117 (2007)

    Article  ADS  Google Scholar 

  27. S. Dye, Geo-neutrinos and the radioactive power of the Earth. Rev. Geophys. 50, 3007 (2012)

    Article  ADS  Google Scholar 

  28. G. Bellini, A. Ianni, L. Ludhova, F. Mantovani, W.F. McDonough, Geo-neutrinos. Prog. Part. Nucl. Phys. 73, 1 (2013)

    Article  ADS  Google Scholar 

  29. M. Baldoncini, I. Callegari, G. Fiorentini, F. Mantovani, B. Ricci, V. Strati, G. Xhixha, Reference worldwide model for antineutrinos from reactors. Phys. Rev. D 91, 065002 (2015)

    Article  ADS  Google Scholar 

  30. G.J. Feldman, J. Hartnell, T. Kobayashi, Long-baseline neutrino oscillation experiments. Adv. High Energy Phys. 2013, 475749 (2013)

    Article  Google Scholar 

  31. Y.Y.Y. Wong, Neutrino mass in cosmology: status and prospects. Ann. Rev. Nucl. Part. Sci. 61, 69 (2011)

    Article  ADS  Google Scholar 

  32. J. Lesgourgues, S. Pastor, Neutrino mass from cosmology. Adv. High Energy Phys. 2012, 608515 (2012)

    Article  MATH  Google Scholar 

  33. R.H. Cyburt, B.D. Fields, K.A. Olive, T.H.Yeh, Big bang nucleosynthesis: 2015, arXiv:1505.01076 [astro-ph.CO]

  34. P.A.R. Ade [Planck Collaboration], Planck, et al., results (XIII, Cosmological parameters, 2015), arXiv:1502.01589 [astro-ph.CO]

  35. M. Wurm, Solar neutrino spectroscopy. Phys. Rep. 685, 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  36. F. Vissani, Solar neutrino physics on the beginning of 2017, arXiv:1706.05435 [nucl-th]

  37. F. Vissani, Comparative analysis of SN1987A antineutrino fluence. J. Phys. G 42, 013001 (2015)

    Article  ADS  Google Scholar 

  38. A. Mirizzi, I. Tamborra, H.T. Janka, N. Saviano, K. Scholberg, R. Bollig, L. Hudepohl, S. Chakraborty, Supernova neutrinos: production, oscillations and detection, arXiv:1508.00785 [astro-ph.HE]

  39. J.F. Beacom, The diffuse supernova neutrino background. Ann. Rev. Nucl. Part. Sci. 60, 439 (2010)

    Article  ADS  Google Scholar 

  40. C. Lunardini, Diffuse supernova neutrinos at underground laboratories, arXiv:1007.3252 [astro-ph.CO]

  41. T.K. Gaisser, F. Halzen, T. Stanev, Particle astrophysics with high-energy neutrinos. Phys. Rep. 258, 173 (1995) [Erratum-ibid. 271, 355 (1996)]

    Google Scholar 

  42. F. Halzen, D. Hooper, High-energy neutrino astronomy: the cosmic ray connection. Rep. Prog. Phys. 65, 1025 (2002)

    Article  ADS  Google Scholar 

  43. F.W. Stecker, Cosmic physics: the high energy frontier. J. Phys. G29, R47 (2003)

    Article  ADS  Google Scholar 

  44. E. Waxman, Neutrino astrophysics: a new tool for exploring the universe. Science 315, 63 (2007)

    Article  ADS  Google Scholar 

  45. P. Lipari, Proton and neutrino extragalactic astronomy. Phys. Rev. D 78, 083011 (2008)

    Article  ADS  Google Scholar 

  46. T. Chiarusi, M. Spurio, High-energy astrophysics with neutrino telescopes. Eur. Phys. J. C 65, 649 (2010)

    Article  ADS  Google Scholar 

  47. T. DeYoung, Neutrino astronomy with IceCube. Mod. Phys. Lett. A 24, 1543 (2009)

    Article  ADS  Google Scholar 

  48. L.A. Anchordoqui, T. Montaruli, In search for extraterrestrial high energy neutrinos. Ann. Rev. Nucl. Part. Sci. 60, 129 (2010)

    Article  ADS  Google Scholar 

  49. U.F. Katz, C. Spiering, High-energy neutrino astrophysics: status and perspectives. Prog. Part. Nucl. Phys. 67, 651 (2012)

    Article  ADS  Google Scholar 

  50. J.K. Becker, High-energy neutrinos in the context of multimessenger physics. Phys. Rep. 458, 173 (2008)

    Article  ADS  Google Scholar 

  51. S. Ando et al., Multimessenger astronomy with gravitational waves and high-energy neutrinos. Rev. Mod. Phys. 85, 1401 (2013)

    Article  ADS  Google Scholar 

  52. A.M. Stasto, Ultrahigh energy neutrino physics. Int. J. Mod. Phys. A 19, 317 (2004)

    Article  ADS  Google Scholar 

  53. C.P. de los Heros, The quest for dark matter with neutrino telescopes, arXiv:1511.03500

  54. A. Boyarsky, O. Ruchayskiy, M. Shaposhnikov, The role of sterile neutrinos in cosmology and astrophysics. Ann. Rev. Nucl. Part. Sci. 59, 191 (2009)

    Article  ADS  Google Scholar 

  55. B. Pontecorvo, Mesonium and anti-mesonium. Sov. Phys. JETP 6, 429 (1957)

    ADS  Google Scholar 

  56. B. Pontecorvo, Neutrino experiments and the problem of conservation of leptonic charge. Sov. Phys. JETP 26, 984 (1968)

    ADS  Google Scholar 

  57. Y. Katayama, K. Matumoto, S. Tanaka, E. Yamada, Prog. Theor. Phys. 28, 675 (1962)

    Article  ADS  Google Scholar 

  58. Z. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28, 870 (1962)

    Article  ADS  Google Scholar 

  59. M. Nakagawa, H. Okonogi, S. Sakata, A. Toyoda, Prog. Theor. Phys. 30, 727 (1963)

    Article  ADS  Google Scholar 

  60. L. Wolfenstein, Phys. Rev. D 17, 2369 (1978)

    Article  ADS  Google Scholar 

  61. S.P. Mikheyev, A. Yu Smirnov, Nuovo Cim. C 9, 17 (1986)

    Article  ADS  Google Scholar 

  62. S.P. Mikheyev, A. Yu Smirnov, Sov. J. Nucl. Phys. 42, 913 (1986)

    Google Scholar 

  63. P. Vogel, J.F. Beacom, Angular distribution of neutron inverse beta decay, \(\bar{\nu }_e + p \rightarrow e^+ + n\). Phys. Rev. D 60, 053003 (1999)

    Article  ADS  Google Scholar 

  64. A. Strumia, F. Vissani, Precise quasielastic neutrino/nucleon cross-section. Phys. Lett. B 564, 42 (2003)

    Article  ADS  Google Scholar 

  65. F. Capozzi, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, Neutrino masses and mixings: Status of known and unknown \(3\nu \) parameters, arXiv:1601.07777 [hep-ph] (2016)

  66. V.N. Gribov, B. Pontecorvo, Neutrino astronomy and lepton charge. Phys. Lett. B 28, 493 (1969)

    Article  ADS  Google Scholar 

  67. A. Palladino, F. Vissani, The natural parameterization of cosmic neutrino oscillations. Eur. Phys. J. C 75, 433 (2015)

    Article  ADS  Google Scholar 

  68. C. Lujan-Peschard, G. Pagliaroli, F. Vissani, Counting muons to probe the neutrino mass spectrum. Eur. Phys. J. C 73, 2439 (2013)

    Article  ADS  Google Scholar 

  69. G. Battistoni, A. Ferrari, C. Rubbia, P.R. Sala, F. Vissani, Atmospheric neutrinos in a large liquid argon detector, hep-ph/0604182

    Google Scholar 

  70. T. Araki et al., [KamLAND Collaboration], Experimental investigation of geologically produced antineutrinos with KamLAND. Nature 436, 499 (2005)

    Article  ADS  Google Scholar 

  71. S. Abe et al., [KamLAND Collaboration], Precision measurement of neutrino oscillation parameters with KamLAND. Phys. Rev. Lett. 100, 221803 (2008)

    Article  ADS  Google Scholar 

  72. A. Gando et al., [KamLAND Collaboration], Partial radiogenic heat model for Earth revealed by geo-neutrino measurements. Nat. Geosci. 4, 647 (2011)

    Article  ADS  Google Scholar 

  73. G. Bellini et al., Borexino Collaboration. Observation of geo-neutrinos. Phys. Lett. B 687, 299 (2010)

    Google Scholar 

  74. G. Bellini et al., [Borexino Collaboration], Measurement of geo-neutrinos from 1353 days of Borexino. Phys. Lett. B 722, 295 (2013)

    Article  ADS  Google Scholar 

  75. M. Agostini et al., [Borexino Collaboration], Spectroscopy of geoneutrinos from 2056 days of Borexino data. Phys. Rev. D 92, 031101 (2015)

    Article  ADS  Google Scholar 

  76. M. Nakahata [Super-Kamiokande Collaboration], Calibration of Super-Kamiokande using an electron linac. Nucl. Instrum. Meth. A 421, 113 (1999); Y. Fukuda et al. [Super-Kamiokande Collaboration], The Super-Kamiokande detector. Nucl. Instrum. Methods A 501, 418 (2003)

    Google Scholar 

  77. H. Sekiya [Super-Kamiokande Collaboration], Solar neutrino analysis of Super-Kamiokande, arXiv:1307.3686

  78. K. Abe et al., Letter of Intent: The Hyper-Kamiokande Experiment—Detector Design and Physics Potential, arXiv:1109.3262 [hep-ex]

  79. K. Abe et al. [Super-Kamiokande Collaboration], Solar Neutrino Measurements in Super-Kamiokande-IV, arXiv:1606.07538 [hep-ex]

  80. R. Tomas, D. Semikoz, G.G. Raffelt, M. Kachelriess, A.S. Dighe, Supernova pointing with low-energy and high-energy neutrino detectors. Phys. Rev. D 68, 093013 (2003)

    Article  ADS  Google Scholar 

  81. G. Pagliaroli, F. Vissani, E. Coccia, W. Fulgione, Neutrinos from supernovae as a trigger for gravitational wave search. Phys. Rev. Lett. 103, 031102 (2009)

    Article  ADS  Google Scholar 

  82. K. Abe et al., [Super-Kamiokande Collaboration], Real-time supernova neutrino burst monitor at Super-Kamiokande. Astropart. Phys. 81, 39 (2016)

    Article  ADS  Google Scholar 

  83. K. Langanke, P. Vogel, E. Kolbe, Signal for supernova muon-neutrino and tau-neutrino neutrinos in water Cherenkov detectors. Phys. Rev. Lett. 76, 2629 (1996)

    Article  ADS  Google Scholar 

  84. J.F. Beacom, M.R. Vagins, GADZOOKS! Anti-neutrino spectroscopy with large water Cherenkov detectors. Phys. Rev. Lett. 93, 171101 (2004)

    Article  ADS  Google Scholar 

  85. H. Watanabe et al., [Super-Kamiokande Collaboration], First study of neutron tagging with a water Cherenkov detector. Astropart. Phys. 31, 320 (2009)

    Article  ADS  Google Scholar 

  86. OYu. Smirnov, O.A. Zaimidoroga, A.V. Derbin, Search for solar pp neutrinos with an upgrade of CTF detector. Phys. Atom. Nucl. 66(4), 712 (2003)

    Article  ADS  Google Scholar 

  87. G. Bellini, The impact of Borexino on the solar and neutrino physics. Nucl. Phys. B 908, 178 (2016)

    Article  ADS  Google Scholar 

  88. M. Wurm et al., [LENA Collaboration], The next-generation liquid-scintillator neutrino observatory LENA. Astropart. Phys. 35, 685 (2012)

    Article  ADS  Google Scholar 

  89. Z. Djurcic [JUNO Collaboration], JUNO Conceptual Design Report, arXiv:1508.07166 [physics.ins-det]; F. An et al. et al., [JUNO Collaboration], Neutrino physics with JUNO. J. Phys. G 43(3), 030401 (2016)

  90. O.Y. Smirnov et al. [Borexino Collaboration], Measurement of neutrino flux from the primary proton–proton fusion process in the Sun with Borexino detector, arXiv:1507.02432 [hep-ex]

  91. M. Biassoni, C. Martinez, Study of supernova \(\nu \) -nucleus coherent scattering interactions. Astropart. Phys. 36, 151 (2012)

    Article  ADS  Google Scholar 

  92. Y. Fukuda et al., [Super-Kamiokande Collaboration], Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81, 1562 (1998)

    Article  ADS  Google Scholar 

  93. D. Casper et al., Measurement of atmospheric neutrino composition with IMB-3. Phys. Rev. Lett. 66, 2561 (1991)

    Article  ADS  Google Scholar 

  94. K.S. Hirata et al., [Kamiokande-II Collaboration], Observation of a small atmospheric muon-neutrino/electron-neutrino ratio in Kamiokande. Phys. Lett. B 280, 146 (1992)

    Article  ADS  Google Scholar 

  95. Y. Fukuda et al., [Kamiokande Collaboration], Atmospheric muon-neutrino/electron-neutrino ratio in the multiGeV energy range. Phys. Lett. B 335, 237 (1994)

    Article  ADS  Google Scholar 

  96. M. Ambrosio et al., [MACRO Collaboration], Measurement of the atmospheric neutrino induced upgoing muon flux using MACRO. Phys. Lett. B 434, 451 (1998)

    Article  ADS  Google Scholar 

  97. M. Honda, T. Kajita, K. Kasahara, S. Midorikawa, Calculation of the flux of atmospheric neutrinos. Phys. Rev. D 52, 4985 (1995)

    Article  ADS  Google Scholar 

  98. G.D. Barr, T.K. Gaisser, P. Lipari, S. Robbins, T. Stanev, A Three-dimensional calculation of atmospheric neutrinos. Phys. Rev. D 70, 023006 (2004)

    Article  ADS  Google Scholar 

  99. M. Honda, M.S. Athar, T. Kajita, K. Kasahara, S. Midorikawa, Atmospheric neutrino flux calculation using the NRLMSISE-00 atmospheric model. Phys. Rev. D 92, 023004 (2015)

    Article  ADS  Google Scholar 

  100. R. Enberg, M.H. Reno, I. Sarcevic, Prompt neutrino fluxes from atmospheric charm. Phys. Rev. D 78, 043005 (2008)

    Article  ADS  Google Scholar 

  101. A. Bhattacharya, R. Enberg, M.H. Reno, I. Sarcevic, A. Stasto, Perturbative charm production and the prompt atmospheric neutrino flux in light of RHIC and LHC. JHEP 1506, 110 (2015)

    Article  ADS  Google Scholar 

  102. R. Gauld, J. Rojo, L. Rottoli, S. Sarkar, J. Talbert, The prompt atmospheric neutrino flux in the light of LHCb. JHEP 1602, 130 (2016)

    Article  ADS  Google Scholar 

  103. S. Schonert, T.K. Gaisser, E. Resconi, O. Schulz, Vetoing atmospheric neutrinos in a high energy neutrino telescope. Phys. Rev. D 79, 043009 (2009)

    Article  ADS  Google Scholar 

  104. T.K. Gaisser, K. Jero, A. Karle, J. van Santen, Generalized self-veto probability for atmospheric neutrinos. Phys. Rev. D 90, 023009 (2014)

    Article  ADS  Google Scholar 

  105. C.V. Achar et al., Detection of muons produced by cosmic ray neutrinos deep underground. Phys. Lett. 18, 196 (1965)

    Article  ADS  Google Scholar 

  106. F. Reines, M.F. Crouch, T.L. Jenkins, W.R. Kropp, H.S. Gurr, G.R. Smith, J.P.F. Sellschop, B. Meyer, Evidence for high-energy cosmic ray neutrino interactions. Phys. Rev. Lett. 15, 429 (1965)

    Article  ADS  Google Scholar 

  107. T. Kajita, The measurement of neutrino properties with atmospheric neutrinos. Ann. Rev. Nucl. Part. Sci. 64, 343 (2014)

    Article  ADS  Google Scholar 

  108. R. Wendell et al., [Super-Kamiokande Collaboration], Atmospheric neutrino oscillation analysis with sub-leading effects in Super-Kamiokande I, II, and III. Phys. Rev. D 81, 092004 (2010)

    Article  ADS  Google Scholar 

  109. E. Richard et al. [Super-Kamiokande Collaboration], Measurements of the atmospheric neutrino flux by Super-Kamiokande: energy spectra, geomagnetic effects, and solar modulation, arXiv:1510.08127 [hep-ex]

  110. M.G. Aartsen et al., [IceCube Collaboration], Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data. Phys. Rev. D 91, 072004 (2015)

    Article  ADS  Google Scholar 

  111. M.G. Aartsen et al., [IceCube Collaboration], Characterization of the Atmospheric Muon Flux in IceCube. Astropart. Phys. 78, 1 (2016)

    Article  ADS  Google Scholar 

  112. M.G. Aartsen et al., [IceCube Collaboration], Measurement of the atmospheric \(\nu _e\) spectrum with IceCube. Phys. Rev. D 91, 122004 (2015)

    Article  ADS  Google Scholar 

  113. S. Adrian-Martinez et al., [ANTARES Collaboration], Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope. Phys. Lett. B 714, 224 (2012)

    Article  ADS  Google Scholar 

  114. S. Adrian-Martinez et al., [ANTARES Collaboration], Measurement of the atmospheric \(\nu _\mu \) energy spectrum from 100 GeV to 200 TeV with the ANTARES telescope. Eur. Phys. J. C 73, 2606 (2013)

    Article  ADS  Google Scholar 

  115. T. Kajita, Y. Totsuka, Observation of atmospheric neutrinos. Rev. Mod. Phys. 73, 85 (2001)

    Article  ADS  Google Scholar 

  116. T.K. Gaisser, M. Honda, Flux of atmospheric neutrinos. Ann. Rev. Nucl. Part. Sci. 52, 153 (2002)

    Article  ADS  Google Scholar 

  117. E.K. Akhmedov, S. Razzaque, A.Y. Smirnov, Mass hierarchy, 2-3 mixing and CP-phase with huge atmospheric neutrino detectors. JHEP 1302, 082 (2013) [JHEP 1307, 026 (2013)]

    Google Scholar 

  118. M.G. Aartsen et al. [IceCube PINGU Collaboration], Letter of Intent: The Precision IceCube Next Generation Upgrade (PINGU), arXiv:1401.2046 [physics.ins-det]

  119. S. Adrian-Martinez et al. [KM3Net Collaboration], Letter of intent for KM3NeT 2.0. J. Phys. G 43(8), 084001 (2016)

    Google Scholar 

  120. U.F. Katz [KM3NeT Collaboration], The ORCA Option for KM3NeT, arXiv:1402.1022 [astro-ph.IM]

  121. T. Thakore, A. Ghosh, S. Choubey, A. Dighe, The reach of INO for atmospheric neutrino oscillation parameters. JHEP 1305, 058 (2013)

    Article  ADS  Google Scholar 

  122. O. Šrámek et al., Geophysical and geochemical constraints on geoneutrino fluxes from Earths mantle. Earth Planet. Sci. Lett. 361, 356 (2013)

    Article  Google Scholar 

  123. S. Dell’Oro, S. Marcocci, M. Viel, F. Vissani, Neutrinoless double beta decay: 2015 review. Adv. High Energy Phys. 2016, 2162659 (2016)

    Article  Google Scholar 

  124. N. Palanque-Delabrouille et al., Neutrino masses and cosmology with Lyman-alpha forest power spectrum. JCAP 1511(11), 011 (2015)

    Article  ADS  Google Scholar 

  125. E. Di Valentino, E. Giusarma, O. Mena, A. Melchiorri and J. Silk, Cosmological limits on neutrino unknowns versus low redshift priors, arXiv:1511.00975 [astro-ph.CO]

  126. X. Zhang, Impacts of dark energy on weighing neutrinos after Planck 2015, arXiv:1511.02651 [astro-ph.CO]

  127. A.J. Cuesta, V. Niro, L. Verde, Neutrino mass limits: robust information from the power spectrum of galaxy surveys, arXiv:1511.05983 [astro-ph.CO]

  128. S. Weinberg, Universal neutrino degeneracy. Phys. Rev. 128, 1457 (1962)

    Article  ADS  MATH  Google Scholar 

  129. A. Cocco, G. Mangano, M. Messina, Probing low energy neutrino backgrounds with neutrino capture on beta decaying nuclei. J. Cosm. Astropart. Phys. 0706, 015 (2007)

    Article  ADS  Google Scholar 

  130. A.J. Long, C. Lunardini, E. Sabancilar, Detecting non-relativistic cosmic neutrinos by capture on tritium: phenomenology and physics potential. J. Cosm. Astropart. Phys. 1408, 038 (2014)

    Article  ADS  Google Scholar 

  131. A.G. Kosovichev, Advances in global and local helioseismology: an introductory review. Lect. Notes Phys. 832, 3 (2011)

    Article  ADS  Google Scholar 

  132. J.N. Bahcall, M.H. Pinsonneault, S. Basu, Solar models: current epoch and time dependences, neutrinos, and helioseismological properties. Astrophys. J. 555, 990 (2001)

    Article  ADS  Google Scholar 

  133. R. Bonetti et al., [LUNA Collaboration], First measurement of the He-3 (He-3, 2p) He-4 cross-section down to the lower edge of the solar Gamow peak. Phys. Rev. Lett. 82, 5205 (1999)

    Article  ADS  Google Scholar 

  134. F. Confortola et al., [LUNA Collaboration], Astrophysical S-factor of the He-3(alpha, gamma) Be-7 reaction measured at low energy via prompt and delayed gamma detection. Phys. Rev. C 75, 065803 (2007)

    Article  ADS  Google Scholar 

  135. A. Formicola et al., [LUNA Collaboration], Astrophysical S factor of N-14(p, gamma)O-15. Phys. Lett. B 591, 61 (2004)

    Article  ADS  Google Scholar 

  136. T. Araki et al., [KamLAND Collaboration], Measurement of neutrino oscillation with KamLAND: evidence of spectral distortion. Phys. Rev. Lett. 94, 081801 (2005)

    Article  ADS  Google Scholar 

  137. A. Gando et al., [KamLAND Collaboration], Constraints on \(\theta _{13}\) from a three-flavor oscillation analysis of reactor antineutrinos at KamLAND. Phys. Rev. D 83, 052002 (2011)

    Article  ADS  Google Scholar 

  138. G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo, A.M. Rotunno, SNO, KamLAND and neutrino oscillations: theta(13), arXiv:0905.3549 [hep-ph]

  139. A. Renshaw et al., [Super-Kamiokande Collaboration], First indication of terrestrial matter effects on solar neutrino oscillation. Phys. Rev. Lett. 112(9), 091805 (2014)

    Article  ADS  Google Scholar 

  140. B. Aharmim et al., [SNO Collaboration], Combined analysis of all three phases of solar neutrino data from the Sudbury Neutrino Observatory. Phys. Rev. C 88, 025501 (2013)

    Article  ADS  Google Scholar 

  141. G. Bellini et al., [Borexino Collaboration], Absence of day-night asymmetry of 862 keV \(^7\)Be solar neutrino rate in Borexino and MSW oscillation parameters. Phys. Lett. B 707, 22 (2012)

    Article  ADS  Google Scholar 

  142. S. Abe et al., [KamLAND Collaboration], Measurement of the 8B solar neutrino flux with the KamLAND liquid scintillator detector. Phys. Rev. C 84, 035804 (2011)

    Article  ADS  Google Scholar 

  143. A. Gando et al., [KamLAND Collaboration], \(^7\)Be Solar neutrino measurement with KamLAND. Phys. Rev. C 92(5), 055808 (2015)

    Article  ADS  Google Scholar 

  144. B.T. Cleveland, T. Daily, R. Davis Jr., J.R. Distel, K. Lande, C.K. Lee, P.S. Wildenhain, J. Ullman, Measurement of the solar electron neutrino flux with the Homestake chlorine detector. Astrophys. J. 496, 505 (1998)

    Article  ADS  Google Scholar 

  145. K.S. Hirata et al. [Kamiokande-II Collaboration], Real time, directional measurement of B-8 solar neutrinos in the Kamiokande-II detector. Phys. Rev. D 44, 2241 (1991) [Phys. Rev. D 45, 2170 (1992)]

    Google Scholar 

  146. Y. Fukuda et al., [Kamiokande Collaboration], Solar neutrino data covering solar cycle 22. Phys. Rev. Lett. 77, 1683 (1996)

    Article  ADS  Google Scholar 

  147. V.A. Kuzmin, Detection of solar neutrinos by means of the 71Ga(nu, e-)71Ge reaction. Sov. Phys. JETP 22, 1051 (1966)

    ADS  Google Scholar 

  148. J.N. Bahcall et al., Proposed solar neutrino experiment using Ga-71. Phys. Rev. Lett. 40, 1351 (1978)

    Article  ADS  Google Scholar 

  149. W. Hampel et al., [GALLEX Collaboration], GALLEX solar neutrino observations: results for GALLEX IV. Phys. Lett. B 447, 127 (1999)

    Article  ADS  Google Scholar 

  150. M. Altmann et al., [GNO Collaboration], Complete results for five years of GNO solar neutrino observations. Phys. Lett. B 616, 174 (2005)

    Article  ADS  Google Scholar 

  151. J.N. Abdurashitov et al., [SAGE Collaboration], Solar neutrino flux measurements by the Soviet-American Gallium Experiment (SAGE) for half the 22 year solar cycle. J. Exp. Theor. Phys. 95, 181 (2002)

    Article  ADS  Google Scholar 

  152. J.N. Abdurashitov et al., [SAGE Collaboration], Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002–2007 data-taking period. Phys. Rev. C 80, 015807 (2009)

    Article  ADS  Google Scholar 

  153. S. Fukuda et al., [Super-Kamiokande Collaboration], Solar B-8 and hep neutrino measurements from 1258 days of Super-Kamiokande data. Phys. Rev. Lett. 86, 5651 (2001)

    Article  ADS  Google Scholar 

  154. J. Hosaka et al., [Super-Kamiokande Collaboration], Solar neutrino measurements in Super-Kamiokande-I. Phys. Rev. D 73, 112001 (2006)

    Article  ADS  Google Scholar 

  155. J.P. Cravens et al., [Super-Kamiokande Collaboration], Solar neutrino measurements in Super-Kamiokande-II. Phys. Rev. D 78, 032002 (2008)

    Article  ADS  Google Scholar 

  156. K. Abe et al., [Super-Kamiokande Collaboration], Solar neutrino results in Super-Kamiokande-III. Phys. Rev. D 83, 052010 (2011)

    Article  ADS  Google Scholar 

  157. H.H. Chen, Direct approach to resolve the solar neutrino problem. Phys. Rev. Lett. 55, 1534 (1985)

    Article  ADS  Google Scholar 

  158. Q.R. Ahmad et al., [SNO Collaboration], Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett. 89, 011301 (2002)

    Article  ADS  Google Scholar 

  159. B. Aharmim et al., [SNO Collaboration], Electron energy spectra, fluxes, and day-night asymmetries of B-8 solar neutrinos from measurements with NaCl dissolved in the heavy-water detector at the Sudbury Neutrino Observatory. Phys. Rev. C 72, 055502 (2005)

    Article  ADS  Google Scholar 

  160. B. Aharmim et al., [SNO Collaboration], Low energy threshold analysis of the Phase I and Phase II data sets of the Sudbury Neutrino Observatory. Phys. Rev. C 81, 055504 (2010)

    Article  ADS  Google Scholar 

  161. C. Arpesella et al., [Borexino Collaboration], Direct measurement of the Be-7 solar neutrino flux with 192 days of Borexino data. Phys. Rev. Lett. 101, 091302 (2008)

    Article  ADS  Google Scholar 

  162. G. Bellini et al., [Borexino Collaboration], Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector. Phys. Rev. D 82, 033006 (2010)

    Article  ADS  Google Scholar 

  163. G. Bellini et al., [Borexino Collaboration], First evidence of pep solar neutrinos by direct detection in Borexino. Phys. Rev. Lett. 108, 051302 (2012)

    Article  ADS  Google Scholar 

  164. G. Bellini et al. [BorexinoCollaboration], Neutrinos from the primary proton-proton fusion process in the Sun. Nature 512, no. 7515, 383 (2014)

    Google Scholar 

  165. G. Bellini et al. [Borexino Collaboration], Final results of Borexino Phase-I on low energy solar neutrino spectroscopy. Phys. Rev. D 89, no. 11, 112007 (2014)

    Google Scholar 

  166. J.N. Bahcall, S. Basu, M. Pinsonneault, A.M. Serenelli, Helioseismological implications of recent solar abundance determinations. Astrophys. J. 618, 1049 (2005)

    Article  ADS  Google Scholar 

  167. J.N. Bahcall, A.M. Serenelli, S. Basu, New solar opacities, abundances, helioseismology, and neutrino fluxes. Astrophys. J. 621, L85 (2005)

    Article  ADS  Google Scholar 

  168. F.L. Villante, B. Ricci, Linear solar models. Astrophys. J. 714, 944 (2010)

    Article  ADS  Google Scholar 

  169. F.L. Villante, Constraints on the opacity profile of the sun from helioseismic observables and solar neutrino flux measurements. Astrophys. J. 724, 98 (2010)

    Article  ADS  Google Scholar 

  170. F.L. Villante, A.M. Serenelli, F. Delahaye, M.H. Pinsonneault, The chemical composition of the Sun from helioseismic and solar neutrino data. Astrophys. J. 787, 13 (2014)

    Article  ADS  Google Scholar 

  171. A. Serenelli, Alive and well: a short review about standard solar models. Eur. Phys. J. A 52(4), 78 (2016)

    Article  ADS  Google Scholar 

  172. N. Vinyoles et al., A new generation of standard solar models. Astrophys. J. 835, 202 (2017)

    Article  ADS  Google Scholar 

  173. F.L. Villante, A. Ianni, F. Lombardi, G. Pagliaroli, F. Vissani, A Step toward CNO solar neutrinos detection in liquid scintillators. Phys. Lett. B 701, 336 (2011)

    Article  ADS  Google Scholar 

  174. G. Bellini et al., [Borexino Collaboration], SOX: Short distance neutrino Oscillations with BoreXino. JHEP 1308, 038 (2013)

    Article  ADS  Google Scholar 

  175. D. Franco et al., Solar neutrino detection in a large volume double-phase liquid argon experiment, arXiv:1510.04196 [physics.ins-det]

  176. A. Ianni, D. Montanino, The Cr-51 and Sr-90 sources in BOREXINO as tool for neutrino magnetic moment searches. Astropart. Phys. 10, 331 (1999)

    Article  ADS  Google Scholar 

  177. V. Berezinsky, M. Narayan, F. Vissani, Mirror model for sterile neutrinos. Nucl. Phys. B 658, 254 (2003)

    Article  ADS  Google Scholar 

  178. P.C. de Holanda, A.Y. Smirnov, Solar neutrino spectrum, sterile neutrinos and additional radiation in the Universe. Phys. Rev. D 83, 113011 (2011)

    Article  ADS  Google Scholar 

  179. S. Gariazzo, C. Giunti, M. Laveder, Y.F. Li, E.M. Zavanin, Light sterile neutrinos. J. Phys. G 43, 033001 (2016)

    Article  Google Scholar 

  180. S.A. Colgate, R.H. White, The Hydrodynamic Behavior of Supernovae Explosions. Astrophys. J. 143, 626 (1966)

    Article  ADS  Google Scholar 

  181. G.S. Bisnovatyi-Kogan, The explosion of a rotating star as a supernova mechanism. Astron. Zh. 47, 813 (1970)

    ADS  Google Scholar 

  182. D.K. Nadyozhin, The neutrino radiation for a hot neutron star formation and the envelope outburst problem. Astrophys. Space Sci. 53, 131 (1978)

    Article  ADS  Google Scholar 

  183. H.A. Bethe, J.R. Wilson, Revival of a stalled supernova shock by neutrino heating. Astrophys. J. 295, 14 (1985)

    Article  ADS  Google Scholar 

  184. K. Hirata [Kamiokande-II Collaboration], Observation of a Neutrino Burst from the Supernova SN1987A. Phys. Rev. Lett. 58, 1490 (1987); K.S. Hirata, et al., [Kamiokande-II Collaboration], Observation in the Kamiokande-II Detector of the Neutrino Burst from Supernova SN 1987a. Phys. Rev. D 38, 448 (1988)

    Google Scholar 

  185. R.M. Bionta [IMB Collaboration], Observation of a neutrino burst in coincidence with supernova SN1987A in the large magellanic cloud. Phys. Rev. Lett. 58, 1494 (1987); C.B. Bratton, et al., [IMB Collaboration], Angular distribution of events from SN1987A. Phys. Rev. D 37, 3361 (1988)

    Google Scholar 

  186. E.N. Alekseev, L.N. Alekseeva, I.V. Krivosheina, V.I. Volchenko, Detection of the neutrino signal from SN1987A in the LMC using the INR Baksan underground scintillation telescope. Phys. Lett. B 205, 209 (1988)

    Article  ADS  Google Scholar 

  187. M. Aglietta et al., On the event observed in the Mont Blanc Underground Neutrino observatory during the occurrence of Supernova 1987a. Europhys. Lett. 3, 1315 (1987)

    Article  ADS  Google Scholar 

  188. J.N. Bahcall, chap. 15 of [2]

    Google Scholar 

  189. T.J. Loredo, D.Q. Lamb, Bayesian analysis of neutrinos observed from supernova SN 1987A. Phys. Rev. D 65, 063002 (2002)

    Article  ADS  Google Scholar 

  190. V.S. Imshennik, O.G. Ryazhskaya, A rotating collapsar and possible interpretation of the LSD neutrino signal from SN 1987A. Astron. Lett. 30, 14 (2004). [arXiv:astro-ph/0401613]

    Article  ADS  Google Scholar 

  191. G. Pagliaroli, F. Vissani, M.L. Costantini, A. Ianni, Improved analysis of SN1987A antineutrino events. Astropart. Phys. 31, 163 (2009)

    Article  ADS  Google Scholar 

  192. M.L. Costantini, A. Ianni, F. Vissani, SN1987A and the properties of neutrino burst. Phys. Rev. D 70, 043006 (2004); G. Pagliaroli, F. Vissani, Features of Kamiokande-II, IMB and Baksan observations and their interpretation in a two-component model for the signal. Astron. Lett. 35, 1 (2009)

    Article  ADS  Google Scholar 

  193. P.S. Shternin, D.G. Yakovlev, A young cooling neutron star in the remnant of Supernova 1987A. Astron. Lett. 34, 675 (2008)

    Article  ADS  Google Scholar 

  194. C. Lujan-Peschard, G. Pagliaroli, F. Vissani, Spectrum of supernova neutrinos in ultra-pure scintillators. JCAP 1407, 051 (2014)

    Article  ADS  Google Scholar 

  195. R. Laha, J.F. Beacom, S.K. Agarwalla, New power to measure supernova \(\nu _e\) with large liquid scintillator detectors, arXiv:1412.8425 [hep-ph]

  196. H. Yuksel, J.F. Beacom, Neutrino spectrum from SN 1987A and from cosmic supernovae. Phys. Rev. D 76, 083007 (2007)

    Article  ADS  Google Scholar 

  197. M. Fukugita, M. Kawasaki, Constraints on the star formation rate from supernova relic neutrino observations. Mon. Not. Roy. Astron. Soc. 340, L7 (2003)

    Article  ADS  Google Scholar 

  198. F. Vissani, G. Pagliaroli, The diffuse supernova neutrino background: Expectations and uncertainties derived from SN1987A. Astron. Astrophys. 528, L1 (2011)

    Article  ADS  Google Scholar 

  199. M. Ackermann et al., [Fermi-LAT Collaboration], Fermi-LAT observations of the diffuse gamma-ray emission: implications for cosmic rays and the interstellar medium. Astrophys. J. 750, 3 (2012)

    Article  ADS  Google Scholar 

  200. P. Lipari, M. Lusignoli, D. Meloni, Flavor composition and energy spectrum of astrophysical neutrinos. Phys. Rev. D 75, 123005 (2007)

    Article  ADS  Google Scholar 

  201. P. Lipari, Lepton spectra in the earth’s atmosphere. Astropart. Phys. 1, 195 (1993)

    Article  ADS  Google Scholar 

  202. E. Waxman, J.N. Bahcall, High energy neutrinos from cosmological gamma-ray burst fireballs. Phys. Rev. Lett. 78, 2292 (1997)

    Article  ADS  Google Scholar 

  203. S.M. Bilenky, B. Pontecorvo, Lepton mixing and neutrino oscillations. Phys. Rep. 41, 225 (1978)

    Article  ADS  Google Scholar 

  204. F. Capozzi, G.L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, Status of three-neutrino oscillation parameters, circa 2013. Phys. Rev. D 89, 093018 (2014)

    Article  ADS  Google Scholar 

  205. J.G. Learned, S. Pakvasa, Detecting tau-neutrino oscillations at PeV energies. Astropart. Phys. 3, 267 (1995)

    Article  ADS  Google Scholar 

  206. H. Athar, M. Jezabek, O. Yasuda, Effects of neutrino mixing on high-energy cosmic neutrino flux. Phys. Rev. D 62, 103007 (2000)

    Article  ADS  Google Scholar 

  207. D.V. Ahluwalia, Ambiguity in source flux of cosmic/astrophysical neutrinos: effects of bi-maximal mixing and quantum-gravity induced decoherence. Mod. Phys. Lett. A 16, 917 (2001)

    Article  ADS  Google Scholar 

  208. S. Pakvasa, Neutrino properties from high energy astrophysical neutrinos. Mod. Phys. Lett. A 19, 1163 (2004)

    Article  ADS  Google Scholar 

  209. G. Barenboim, C. Quigg, Neutrino observatories can characterize cosmic sources and neutrino properties. Phys. Rev. D 67, 073024 (2003)

    Article  ADS  Google Scholar 

  210. J.F. Beacom, N.F. Bell, D. Hooper, S. Pakvasa, T.J. Weiler, Measuring flavor ratios of high-energy astrophysical neutrinos, Phys. Rev. D 68, 093005 (2003) [Erratum-ibid. D 72, 019901 (2005)]

    Google Scholar 

  211. L.A. Anchordoqui, H. Goldberg, F. Halzen, T.J. Weiler, Galactic point sources of TeV antineutrinos. Phys. Lett. B 593, 42 (2004)

    Article  ADS  Google Scholar 

  212. Y. Chikashige, R.N. Mohapatra, R.D. Peccei, Spontaneously broken lepton number and cosmological constraints on the neutrino mass spectrum. Phys. Rev. Lett. 45, 1926 (1980); G.B. Gelmini, M. Roncadelli, Left-handed neutrino mass scale and spontaneously broken lepton number. Phys. Lett. B 99, 411 (1981)

    Article  Google Scholar 

  213. A. Acker, S. Pakvasa, J.T. Pantaleone, Decaying Dirac neutrinos. Phys. Rev. D 45, 1 (1992)

    Article  ADS  Google Scholar 

  214. J.F. Beacom, N.F. Bell, D. Hooper, S. Pakvasa, T.J. Weiler, Decay of high-energy astrophysical neutrinos. Phys. Rev. Lett. 90, 181301 (2003)

    Article  ADS  Google Scholar 

  215. L. Wolfenstein, Nucl. Phys. B 186, 147 (1981); S.T. Petcov, On pseudodirac neutrinos, neutrino oscillations and neutrinoless double beta decay. Phys. Lett. B 110, 245 (1982); S.M. Bilenky, B. Pontecorvo, Neutrino oscillations with large oscillation length in spite of large (Majorana) neutrino masses? Sov. J. Nucl. Phys. 38, 248 (1983); C. Giunti, C.W. Kim, U.W. Lee, Oscillations of pseudoDirac neutrinos and the solar neutrino problem. Phys. Rev. D 46, 3034 (1992); M. Kobayashi, C.S. Lim, Pseudo-Dirac scenario for neutrino oscillations. Phys. Rev. D 64, 013003 (2001); K.R. Balaji, A. Kalliomaki, J. Maalampi, Revisiting pseudo-Dirac neutrinos. Phys. Lett. B 524, 153 (2002)

    Article  Google Scholar 

  216. J.F. Beacom, N.F. Bell, D. Hooper, J.G. Learned, S. Pakvasa, T.J. Weiler, Pseudo-Dirac neutrinos, a challenge for neutrino telescopes. Phys. Rev. Lett. 92, 011101 (2004)

    Article  ADS  Google Scholar 

  217. P. Keranen, J. Maalampi, M. Myyrylainen, J. Riittinen, Effects of sterile neutrinos on the ultrahigh-energy cosmic neutrino flux. Phys. Lett. B 574, 162 (2003)

    Article  ADS  Google Scholar 

  218. D. Hooper, D. Morgan, E. Winstanley, Probing quantum decoherence with high-energy neutrinos. Phys. Lett. B 609, 206 (2005)

    Article  ADS  Google Scholar 

  219. M. Gasperini, Experimental constraints on a minimal and nonminimal violation of the equivalence principle in the oscillations of massive neutrinos. Phys. Rev. D 39, 3606 (1989)

    Article  ADS  Google Scholar 

  220. H. Minakata, A.Y. Smirnov, High energy cosmic neutrinos and the equivalence principle. Phys. Rev. D 54, 3698 (1996)

    Article  ADS  Google Scholar 

  221. R. Fardon, A.E. Nelson, N. Weiner, Dark energy from mass varying neutrinos. JCAP 0410, 005 (2004)

    Article  ADS  Google Scholar 

  222. P.Q. Hung, H. Päs, Cosmo MSW effect for mass varying neutrinos. Mod. Phys. Lett. A 20, 1209 (2005)

    Article  ADS  Google Scholar 

  223. R.C. Hartman et al., [EGRET Collaboration], The third EGRET catalog of high-energy gamma-ray sources. Astrophys. J. Suppl. 123, 79 (1999)

    Article  ADS  Google Scholar 

  224. C. Pittori et al., [AGILE Collaboration], First AGILE catalog of high confidence gamma-ray sources. Astron. Astrophys. 506, 1563 (2009)

    Article  ADS  Google Scholar 

  225. F. Acero, Fermi large area telescope third source catalog. Astrophys. J. Suppl. 218, no. 2, 23 (2015)

    Google Scholar 

  226. S. Adrian-Martinez et al., [Antares Collaboration], First search for point sources of high energy cosmic neutrinos with the ANTARES neutrino telescope. Astrophys. J. 743, L14 (2011)

    Article  ADS  Google Scholar 

  227. S. Adrian-Martinez et al., [ANTARES Collaboration], Search for cosmic neutrino point sources with four year data of the ANTARES telescope. Astrophys. J. 760, 53 (2012)

    Article  ADS  Google Scholar 

  228. S. Adrian-Martinez et al., [ANTARES Collaboration], Searches for point-like and extended neutrino sources close to the Galactic Centre using the ANTARES neutrino telescope. Astrophys. J. 786, L5 (2014)

    Article  ADS  Google Scholar 

  229. A. Achterberg et al., [IceCube Collaboration], Five years of searches for point sources of astrophysical neutrinos with the AMANDA-II neutrino telescope. Phys. Rev. D 75, 102001 (2007)

    Article  ADS  Google Scholar 

  230. M.G. Aartsen et al., [IceCube Collaboration], Searches for small-scale anisotropies from neutrino point sources with three years of IceCube data. Astropart. Phys. 66, 39 (2015)

    Article  ADS  Google Scholar 

  231. S. Adrian-Martinez et al. [ANTARES and IceCube Collaborations], The First combined search for neutrino point-sources in the southern hemisphere with the ANTARES and Icecube neutrino telescopes. Astrophys. J. 823, no. 1, 65 (2016)

    Google Scholar 

  232. HESS Collaboration, Acceleration of petaelectronvolt protons in the Galactic Centre. Nature 531, 476 (2016)

    Google Scholar 

  233. S. Celli, A. Palladino, F. Vissani, Multi-TeV gamma-rays and neutrinos from the Galactic Center region, arXiv:1604.08791 [astro-ph.HE]

  234. HESS Collaboration, A new population of very high energy gamma-ray sources in the Milky Way. Science 307, 1938 (2005)

    Google Scholar 

  235. HESS Collaboration, The HESS survey of the inner galaxy in very high-energy gamma-rays. Astrophys. J. 636, 777 (2006). [astro-ph/0510397]

    Google Scholar 

  236. HESS Collaboration, 437, L7 (2005). [astro-ph/0505380]

    Google Scholar 

  237. HESS Collaboration, High-energy particle acceleration in the shell of a supernova remnant. Nature 432, 75 (2004)

    Google Scholar 

  238. HESS Collaboration, A detailed spectral and morphological study of the gamma-ray supernova remnant RX J1713.7-3946 with HESS, [astro-ph/0511678]

    Google Scholar 

  239. HESS Collaboration, Very high energy gamma rays from the direction of Sagittarius A*. Astron. Astrophys. 425, L13 (2004)

    Google Scholar 

  240. HESS Collaboration, Science 309, 746 (2005)

    Google Scholar 

  241. T. Piran, The physics of gamma-ray bursts. Rev. Mod. Phys. 76, 1143 (2004)

    Article  ADS  Google Scholar 

  242. B. Zhang, P. Meszaros, Gamma-ray bursts: progress, problems & prospects. Int. J. Mod. Phys. A 19, 2385 (2004)

    Article  ADS  Google Scholar 

  243. A. Dar, A. De Rujula, Towards a complete theory of Gamma Ray Bursts. Phys. Rept. 405, 203 (2004)

    Article  ADS  Google Scholar 

  244. M.L. Costantini, F. Vissani, Expected neutrino signal from supernova remnant RX J1713.7-3946 and flavor oscillations. Astropart. Phys. 23, 477 (2005)

    Article  ADS  Google Scholar 

  245. A. Heavens, B. Panter, R. Jimenez, J. Dunlop, The complete star formation history of the Universe. Nature 428, 625 (2004)

    Article  ADS  Google Scholar 

  246. M. Fukugita, P.J.E. Peebles, The cosmic energy inventory. Astrophys. J. 616, 643 (2004)

    Article  ADS  Google Scholar 

  247. Y. Ueda et al., Cosmological evolution of the hard X-ray AGN luminosity function: formation history of supermassive black holes. Prog.Th. Phys. Supp 155, 209 (2004)

    Google Scholar 

  248. E. Waxman, J.N. Bahcall, High energy neutrinos from astrophysical sources: an upper bound. Phys. Rev. D 59, 023002 (1999)

    Article  ADS  Google Scholar 

  249. K. Mannheim, R.J. Protheroe, J.P. Rachen, On the cosmic ray bound for models of extragalactic neutrino production. Phys. Rev. D 63, 023003 (2001)

    Article  ADS  Google Scholar 

  250. V. Berezinsky, A.Z. Gazizov, S.I. Grigorieva, Dip in UHECR spectrum as signature of proton interaction with CMB. Phys. Lett. B 612, 147 (2005)

    Article  ADS  Google Scholar 

  251. K. Greisen, End to the cosmic ray spectrum? Phys. Rev. Lett. 16, 748 (1966)

    Article  ADS  Google Scholar 

  252. G.T. Zatsepin, V.A. Kuzmin, Upper limit of the spectrum of cosmic rays. JETP Lett. 4, 78 (1966)

    ADS  Google Scholar 

  253. V.S. Berezinsky, G.T. Zatsepin, Cosmic rays at ultrahigh-energies (neutrino?). Phys. Lett. B 28, 423 (1969)

    Article  ADS  Google Scholar 

  254. R. Engel, D. Seckel, T. Stanev, Neutrinos from propagation of ultrahigh-energy protons. Phys. Rev. D 64, 093010 (2001)

    Article  ADS  Google Scholar 

  255. M. Ahlers, L.A. Anchordoqui, M.C. Gonzalez-Garcia, F. Halzen, S. Sarkar, GZK Neutrinos after the Fermi-LAT diffuse photon flux measurement. Astropart. Phys. 34, 106 (2010)

    Article  ADS  Google Scholar 

  256. A. Franceschini, G. Rodighiero, M. Vaccari, The extragalactic optical-infrared background radiations, their time evolution and the cosmic photon-photon opacity. Astron. Astrophys. 487, 837 (2008)

    Article  ADS  Google Scholar 

  257. M. Ackermann et al., [Fermi-LAT Collaboration], The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV. Astrophys. J. 799, 86 (2015)

    Article  ADS  Google Scholar 

  258. D. Saltzberg, Status of radio and acoustic detection of ultra-high energy cosmic astro-ph/0501364

    Google Scholar 

  259. H. Falcke, P. Gorham, R.J. Protheroe, Prospects for radio detection of ultra-high energy cosmic rays and New Astron. Rev. 48, 1487 (2004)

    Google Scholar 

  260. A. Letessier-Selvon, Auger: a large air shower array and neutrino telescope. Nucl. Phys. Proc. Suppl. 118, 399 (2003)

    Article  ADS  Google Scholar 

  261. Euso Collaboration, Extreme Universe Space Observatory–EUSO: an innovative project for the detection of extreme energy cosmic rays and neutrinos. Nuovo Cim. 24C, 445 (2001)

    ADS  Google Scholar 

  262. A. Aab et al. [Pierre Auger Collaboration], Improved limit to the diffuse flux of ultrahigh energy neutrinos from the Pierre Auger Observatory. Phys. Rev. D 91, no. 9, 092008 (2015)

    Google Scholar 

  263. S.W. Barwick et al., [ARIANNA Collaboration], A first search for cosmogenic neutrinos with the ARIANNA hexagonal radio array. Astropart. Phys. 70, 12 (2015)

    Article  ADS  Google Scholar 

  264. P. Allison et al., [ARA Collaboration], First constraints on the ultra-high energy neutrino flux from a prototype station of the Askaryan Radio Array. Astropart. Phys. 70, 62 (2015)

    Article  ADS  Google Scholar 

  265. R. Gandhi, C. Quigg, M.H. Reno, I. Sarcevic, Neutrino interactions at ultrahigh-energies. Phys. Rev. D 58, 093009 (1998)

    Article  ADS  Google Scholar 

  266. M.G. Aartsen et al., [IceCube Collaboration], First observation of PeV-energy neutrinos with IceCube. Phys. Rev. Lett. 111, 021103 (2013)

    Article  ADS  Google Scholar 

  267. M.G. Aartsen et al., [IceCube Collaboration], Evidence for high-energy extraterrestrial neutrinos at the IceCube detector. Science 342, 1242856 (2013)

    Article  Google Scholar 

  268. M.G. Aartsen et al., [IceCube Collaboration], Observation of high-energy astrophysical neutrinos in three years of IceCube data. Phys. Rev. Lett. 113, 101101 (2014)

    Article  ADS  Google Scholar 

  269. M.G. Aartsen et al. [IceCube Collaboration], Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube. Phys. Rev. D 91, no. 2, 022001 (2015)

    Google Scholar 

  270. M.G. Aartsen et al., [IceCube Collaboration], Evidence for astrophysical muon neutrinos from the Northern Sky with IceCube. Phys. Rev. Lett. 115(8), 081102 (2015)

    Article  ADS  Google Scholar 

  271. M.G. Aartsen et al. [IceCube Collaboration], A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube. Astrophys. J. 809, no. 1, 98 (2015)

    Google Scholar 

  272. M.G. Aartsen et al., [IceCube Collaboration], Flavor ratio of astrophysical neutrinos above 35 TeV in IceCube. Phys. Rev. Lett. 114(17), 171102 (2015)

    Article  ADS  Google Scholar 

  273. M.G. Aartsen et al., [IceCube Collaboration], Search for astrophysical tau neutrinos in three years of IceCube data. Phys. Rev. D 93(2), 022001 (2016)

    Article  ADS  Google Scholar 

  274. M.G. Aartsen et al. [IceCube Collaboration], Observation and characterization of a cosmic muon neutrino flux from the Northern Hemisphere using six years of IceCube data. Astrophys. J. 833, no.1, 3 (2016)

    Google Scholar 

  275. A. Palladino, M. Spurio, F. Vissani, On the IceCube spectral anomaly. JCAP 1612(12), 045 (2016)

    Google Scholar 

  276. P. Padovani, E. Resconi, P. Giommi, B. Arsioli, Y.L. Chang, Extreme blazars as counterparts of IceCube astrophysical neutrinos. Mon. Not. Roy. Astron. Soc. 457(4), 3582 (2016)

    Article  ADS  Google Scholar 

  277. M.G. Aartsen et al., [IceCube Collaboration], The contribution of Fermi-2LAC blazars to the diffuse TeV-PeV neutrino flux. Astrophys. J. 835(1), 45 (2017)

    Article  ADS  Google Scholar 

  278. A. Palladino, F. Vissani, Can BL Lac emission explain the neutrinos above 0.2 PeV?, arXiv:1702.08779 [astro-ph.HE]

  279. M. Ahlers, K. Murase, Probing the Galactic Origin of the IceCube excess with gamma-rays. Phys. Rev. D 90, no. 2, 023010 (2014)

    Google Scholar 

  280. L.A. Anchordoqui, H. Goldberg, T.C. Paul, L.H.M. da Silva, B.J. Vlcek, Estimating the contribution of Galactic sources to the diffuse neutrino flux. Phys. Rev. D 90(12), 123010 (2014)

    Article  ADS  Google Scholar 

  281. A.M. Taylor, S. Gabici, F. Aharonian, Galactic halo origin of the neutrinos detected by IceCube. Phys. Rev. D 89, no. 10, 103003 (2014)

    Google Scholar 

  282. A. Neronov, D.V. Semikoz, Evidence the Galactic contribution to the IceCube astrophysical neutrino flux. Astropart. Phys. 75, 60 (2016)

    Article  ADS  Google Scholar 

  283. S. Troitsky, Search for Galactic disk and halo components in the arrival directions of high-energy astrophysical neutrinos. JETP Lett. 102(12), 785 (2015)

    Article  ADS  Google Scholar 

  284. A. Palladino, F. Vissani, Extragalactic plus Galactic model for IceCube neutrino events,’ arXiv:1601.06678 [astro-ph.HE], accepted for publication in ApJ

  285. A. Palladino, G. Pagliaroli, F.L. Villante, F. Vissani, What is the flavor of the cosmic neutrinos seen by IceCube? Phys. Rev. Lett. 114, 171101 (2015)

    Article  ADS  Google Scholar 

  286. A. Palladino, G. Pagliaroli, F.L. Villante, F. Vissani, Double pulses and cascades above 2 PeV in IceCube. Eur. Phys. J. C 76, 52 (2016)

    Article  ADS  Google Scholar 

  287. S.L. Glashow, Resonant scattering of antineutrinos. Phys. Rev. 118, 316 (1960)

    Article  ADS  Google Scholar 

  288. M. Honda, T. Kajita, K. Kasahara, S. Midorikawa, T. Sanuki, Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data. Phys. Rev. D 75, 043006 (2007)

    Article  ADS  Google Scholar 

  289. S. Adrian-Martinez et al. [ANTARES Collaboration], Constraints on the neutrino emission from the Galactic Ridge with the ANTARES telescope, arXiv:1602.03036 [astro-ph.HE]

  290. G. Pagliaroli, A. Palladino, F.L. Villante, F. Vissani, Testing nonradiative neutrino decay scenarios with IceCube data. Phys. Rev. D 92, 113008 (2015)

    Article  ADS  Google Scholar 

  291. A. Esmaili, P.D. Serpico, Are IceCube neutrinos unveiling PeV-scale decaying dark matter? JCAP 1311, 054 (2013)

    Article  ADS  Google Scholar 

  292. C. Lunardini, S. Razzaque, K.T. Theodoseau, L. Yang, Neutrino events at IceCube and the Fermi Bubbles. Phys. Rev. D 90, 023016 (2014)

    Article  ADS  Google Scholar 

  293. P. Padovani, E. Resconi, Are both BL Lacs and pulsar wind nebulae the astrophysical counterparts of IceCube neutrino events? Mon. Not. Roy. Astron. Soc. 443, no. 1, 474 (2014)

    Google Scholar 

  294. A. Achterberg et al., [IceCube Collaboration], First year performance of The IceCube neutrino telescope. Astropart. Phys. 26, 155 (2006)

    Article  ADS  Google Scholar 

  295. M.A. Markov, On high energy neutrino physics, in Proceedings, 10th International Conference on High-Energy Physics (ICHEP 60), pp. 578–581 (1960), http://inspirehep.net/record/1341439/files/C60-08-25-p578.pdf

  296. S.I. Klimushin, E.V. Bugaev, I.A. Sokalski, Precise parametrizations of muon energy losses in water, hep-ph/0106010

    Google Scholar 

  297. R. Abbasi et al., [IceCube Collabboration], The design and performance of IceCube DeepCore. Astropart. Phys. 35, 615 (2012)

    Article  ADS  Google Scholar 

  298. K. Hanson, O. Tarasova, [IceCube Collaboration], Design and production of the IceCube digital optical module. Nucl. Instrum. Methods A567, 214 (2006)

    Article  ADS  Google Scholar 

  299. M. Ageron et al., ANTARES: the first undersea neutrino telescope. Nucl. Instrum. Methods A656, 11 (2011)

    Article  ADS  Google Scholar 

  300. V. Aynutdinov et al., [BAIKAL Collaboration], The BAIKAL neutrino experiment: physics results and perspectives. Nucl. Instrum. Meth. A 602, 14 (2009)

    Article  ADS  Google Scholar 

  301. A. Avrorin et al., The prototyping/early construction phase of the BAIKAL-GVD project. Nucl. Instrum. Meth. A 742, 82 (2014)

    Article  ADS  Google Scholar 

  302. http://www.km3net.org/home.php

    Google Scholar 

  303. S. Adrián-Martinez et al., (KM3NeT Collaboration), Expansion cone for the 3-inch PMTs of the KM3NeT Optical Modules. JINST 8, T03006 (2013)

    Article  Google Scholar 

  304. T. Damour, A. Vilenkin, Gravitational wave bursts from cosmic strings, Phys. Rev. Lett. 85, 3761 (2000); V.S. Berezinsky, A. Vilenkin, Ultrahigh-energy neutrinos from hidden sector topological defects. Phys. Rev. D 62, 083512 (2000)

    Article  Google Scholar 

  305. S. Adrian-Martinez et al., [LIGO Scientific and VIRGO Collaborations], A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. JCAP 1306, 008 (2013)

    Article  ADS  Google Scholar 

  306. S. Adrian-Martinez et al. [ANTARES and IceCube and LIGO Scientific and Virgo Collaborations], High-energy Neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube, arXiv:1602.05411 [astro-ph.HE]

  307. F. Halzen, G.G. Raffelt, Reconstructing the supernova bounce time with neutrinos in IceCube. Phys. Rev. D 80, 087301 (2009)

    Article  ADS  Google Scholar 

  308. R. Bernabei et al., [DAMA and LIBRA Collaborations], New results from DAMA/LIBRA. Eur. Phys. J. C 67, 39 (2010)

    Article  ADS  Google Scholar 

  309. S.H. Hansen, J. Lesgourgues, S. Pastor, J. Silk, Constraining the window on sterile neutrinos as warm dark matter. Mon. Not. Roy. Astron. Soc. 333, 544 (2002)

    Article  ADS  Google Scholar 

  310. M. Cirelli, N. Fornengo, T. Montaruli, I.A. Sokalski, A. Strumia, F. Vissani, Spectra of neutrinos from dark matter annihilations. Nucl. Phys. B 727, 99 (2005) [Err.: Nucl. Phys. B 790, 338 (2008)]

    Google Scholar 

  311. M. Blennow, J. Edsjo, T. Ohlsson, Neutrinos from WIMP annihilations using a full three-flavor Monte Carlo. JCAP 0801, 021 (2008)

    Article  ADS  Google Scholar 

  312. V. Berezinsky, E. Sabancilar, A. Vilenkin, Extremely high energy neutrinos from cosmic strings. Phys. Rev. D 84, 085006 (2011)

    Article  ADS  Google Scholar 

  313. C. Lunardini, E. Sabancilar, Cosmic strings as emitters of extremely high energy neutrinos. Phys. Rev. D 86, 085008 (2012)

    Article  ADS  Google Scholar 

  314. R. Foot, R.R. Volkas, Neutrino physics and the mirror world: how exact parity symmetry explains the solar neutrino deficit, the atmospheric neutrino anomaly and the LSND experiment. Phys. Rev. D 52, 6595 (1995)

    Article  ADS  Google Scholar 

  315. M. Kobayashi, C.S. Lim, Pseudo Dirac scenario for neutrino oscillations. Phys. Rev. D 64, 013003 (2001)

    Article  ADS  Google Scholar 

  316. J.F. Beacom, N.F. Bell, D. Hooper, J.G. Learned, S. Pakvasa, T.J. Weiler, PseudoDirac neutrinos: a challenge for neutrino telescopes. Phys. Rev. Lett. 92, 011101 (2004)

    Article  ADS  Google Scholar 

  317. J.N. Bahcall, N. Cabibbo, A. Yahil, Are neutrinos stable particles? Phys. Rev. Lett. 28, 316 (1972)

    Article  ADS  Google Scholar 

  318. S. Pakvasa, K. Tennakone, Neutrinos of non-zero rest mass. Phys. Rev. Lett. 28, 1415 (1972)

    Article  ADS  Google Scholar 

  319. K. Eguchi et al., [KamLAND Collaboration], A high sensitivity search for anti-nu(e)’s from the sun and other sources at KamLAND. Phys. Rev. Lett. 92, 071301 (2004)

    Article  ADS  Google Scholar 

  320. P. Baerwald, M. Bustamante, W. Winter, Neutrino decays over cosmological distances and the implications for neutrino telescopes. JCAP 1210, 020 (2012)

    Article  ADS  Google Scholar 

  321. G. Pagliaroli, A. Palladino, F.L. Villante, F. Vissani, Testing nonradiative neutrino decay scenarios with IceCube data. Phys. Rev. D 92, no. 11, 113008 (2015)

    Google Scholar 

  322. J.F. Beacom, N.F. Bell, D. Hooper, S. Pakvasa, T.J. Weiler, Measuring flavor ratios of high-energy astrophysical neutrinos. Phys. Rev. D 68 (2003) 093005 [Err.: Phys. Rev. D 72 (2005) 019901]

    Google Scholar 

  323. D.W. Hogg, Distance measures in cosmology, arXiv:astro-ph/9905116 (1999)

  324. G. Riccobene et al., Deep seawater inherent optical properties in the Southern Ionian Sea [NEMO Collaboration]. Astropart. Phys. 27, 1 (2007)

    Article  ADS  Google Scholar 

  325. R.C. Smith, K.S. Baker, Optical properties of the clearest natural waters (200800 nm). Appl. Opt. 20, 177 (1981)

    Article  ADS  Google Scholar 

  326. V. Berezinsky, High energy neutrino astronomy, Proceedings of Neutrino 1990. Nucl. Phys. B Proc. Suppl 19 (1991) 375

    Google Scholar 

  327. F. Vissani, Neutrinos from galactic sources of cosmic rays with known \(\gamma \)-ray spectra. Astropart. Phys. 26, 310 (2006)

    Article  ADS  Google Scholar 

  328. A. Kappes, J. Hinton, C. Stegmann, F.A. Aharonian, Potential neutrino signals from galactic gamma-ray sources. Astrophys. J. 656, 870 (2007) Erratum: [Astrophys. J. 661, 1348 (2007)]

    Google Scholar 

  329. S.R. Kelner, F.A. Aharonian, V.V. Bugayov, Energy spectra of gamma-rays, electrons and neutrinos produced at proton-proton interactions in the very high energy regime. Phys. Rev. D 74, 034018 (2006) Erratum: [Phys. Rev. D 79, 039901 (2009)]

    Google Scholar 

  330. F.L. Villante, F. Vissani, How precisely neutrino emission from supernova remnants can be constrained by gamma ray observations? Phys. Rev. D 78, 103007 (2008)

    Article  ADS  Google Scholar 

  331. F. Vissani, G. Pagliaroli, F.L. Villante, On the goals of neutrino astronomy. Nuovo Cim. 32, 353 (2009); G. Pagliaroli, F.L. Villante, F. Vissani, Neutrini dallo spazio (discutendo gli obiettivi di una nuova astronomia). Nuovo Saggiatore 25(3–4), 5–18 (2009)

    Google Scholar 

  332. F. Vissani, Neutrino Sources and Properties, Gran Sasso Summer Institute 2014, Hands-On Experimental Underground Physics at LNGS (2014)

    Google Scholar 

  333. F. Vissani, M.L. Costantini, W. Fulgione, A. Ianni, G. Pagliaroli, What is the issue with SN1987A neutrinos?, arXiv:1008.4726 [hep-ph]

  334. F. Vissani, A. Boeltzig, Supernova neutrinos: risks and opportunities. PoS NEUTEL 2015, 008 (2015)

    Google Scholar 

  335. M.G. Aartsen et al. [IceCube Collaboration], The IceCube Neutrino Observatory—Contributions to ICRC 2015 Part I: Point Source Searches, arXiv:1510.05222 [astro-ph.HE]

  336. J. Learned, Alternative techniques for high energy neutrino astronomy. Nucl. Phys. Proc. Suppl. 118, 405 (2003)

    Article  ADS  Google Scholar 

  337. M.G. Aartsen et al. [IceCube Collaboration], The IceCube Neutrino Observatory—Contributions to ICRC 2015 Part II: Atmospheric and Astrophysical Diffuse Neutrino Searches of All Flavors, arXiv:1510.05223 [astro-ph.HE]

  338. A.D. Avrorin et al. [BAIKAL-GVD Collaboration], Status of the Baikal-GVD Project, https://doi.org/10.1142/9789814663618-0019

  339. P. Lipari, Introduction to Neutrino Physics, in Proceedings of CERN-CLAF School of Physics (2001), Edited by E. Nick, B. Marechal. Geneva, CERN, 2003 available as http://cds.cern.ch/record/677618/files/p115.pdf

  340. A. Karle, Neutrino astronomy–a review of future experiments. Nucl. Phys. Proc. Suppl. 235–236, 364 (2013)

    Article  Google Scholar 

  341. C. Pena-Garay, Neutrino Physics faces Cosmology, talk given at GSSI (L’Aquila), on January 19 (2016)

    Google Scholar 

  342. J. Bahcall webpage: http://www.sns.ias.edu/~jnb/

  343. A. Serenelli webpage: http://www.ice.csic.es/personal/aldos/Home.html

  344. The arXiv, http://arxiv.org

  345. The inSPIRE database, http://inspirehep.net

  346. The SAO/NASA Astrophysics Data System, http://esoads.eso.org

  347. Neutrino Unbound, http://www.nu.to.infn.it/

  348. Long Baseline News, http://www.hep.anl.gov/ndk/longbnews/

  349. The Particle Data Group report, http://pdg.lbl.gov

  350. The Durham database on neutrino cross sections, http://durpdg.dur.ac.uk/review/neutrino/

  351. The Martin-Stirling-Thorne-Watt parton distribution functions, https://mstwpdf.hepforge.org

  352. The Durham HepData Project, http://hepdata.cedar.ac.uk/pdfs/

  353. LHAPDF6, http://lhapdf.hepforge.org/pages.html

  354. The National Institute of Standards and Technology (NIST), http://www.nist.gov/pml/

  355. Fundamental Physical Constants http://physics.nist.gov/cuu/Constants/Table/allascii.txt

  356. Numerical approximation for the comoving distance, https://www.ssl.berkeley.edu/~mlampton/ComovingDistance.pdf

  357. Calculation of the probability of oscillations in the Earth, http://pcbat1.mi.infn.it/~battist/cgi-bin/oscil/index.r

  358. Enomoto Sanshiro’s Geoneutrino Spectrum and Luminosity webpage, http://www.awa.tohoku.ac.jp/~sanshiro/research/geoneutrino/spectrum/

  359. For geochemical and geodynamical models, see wiki page on Carbonaceous chondrite, https://en.wikipedia.org/wiki/Carbonaceous_chondrite#CI_group

  360. For cosmogeophysical models, see wiki page on Enstatite chondrite, https://en.wikipedia.org/wiki/Enstatite_chondrite

  361. SNEWS: SuperNova Early Warning System, http://snews.bnl.gov

  362. The IceCube Web Page, https://icecube.wisc.edu/masterclass/neutrinos/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Vissani .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Neutrinos on Web

Besides the web pages of the main Journals, there are several important repositories of papers online, used by various scientific communities that are interested in neutrinos. They include the arXiv [344] the searchable inSPIRE database [344], and the The SAO/NASA Astrophysics Data System [346].

Carlo Giunti and Marco Laveder provide access to an updated selection of references on neutrinos, mostly aimed at particle physicists, called Neutrino Unbound [347], while Maury Goodman maintains a dedicated newsletter Long Baseline News [348] concerning rumors and references of special interest about neutrinos.

There are several workshops and conference series dedicated to neutrinos, that allow the scientific community to remain informed and updated. The main ones, concerning the themes in which we are interested here, are named,

  • Conference on Neutrino Physics and Astrophysics (Neutrino)

  • Weak Interaction and Neutrinos (WIN)

  • Neutrino Oscillation Workshop (NOW)

  • Neutrino Telescopes in Venice (NuTel)

  • Neutrino-Nucleus Interactions in Few GeV region (NuInt)

The above names, already, allow one to have an idea of the main thrusts of the discussion—even if they changes a bit in the course of the years, as it is natural. For each conference, typically, useful web sites are arranged where the files of the presentations are made public before proceedings are issued, allowing a fast, wider and more effective diffusion of the information. More complete and updated lists are in the above web pages of Giunti-Laveder [347] and of Goodman [348].

Finally, we recall that the PDG group [349] releases any two year a very useful report on particle physics, including review works on neutrinos. A database with neutrino cross sections measured below 30 GeV is in [350]. There are several useful sites to obtain parton distribution functions in various formats (Fortran, C++, Mathematica), e.g., [351,352,353].

Appendix 2: Wavefunction of the Neutrino

In this section we offer a summary of well-known results concerning the description of neutrinos in theoretical particle physics. This summary does not want to be complete and exhaustive, but rather, aims only to give an idea of the description of relativistic fermions to a generic readership, by using the (supposedly known) concepts of quantum/wave mechanics: wavefunctions, hamiltonian, spin, etc.

Plane waves of fermions

The plane waves that describe a relativistic fermion are eigenstates of the energy, momentum and of the helicity (i.e., the projection of the spin over the momentum). In formal terms, using the units \(\hbar =c=1\), so that, e.g., the momentum operator is \(\hat{p}^i=-i \partial /\partial x^i \), and denoting the wavefunction with \(\psi \) to simplify the notations (or sometimes using the complete notation \(\psi (\mathbf {p}\lambda ,x) \)) we have,

$$\begin{aligned} \left\{ \begin{array}{lr} \left[ {\alpha }^i \hat{p}^i +\beta m \right] \psi (x) =E\ \psi (x) &{} \text {[energy]} \\ \hat{p}^i \ \psi (x) ={p}^i \ \psi (x) &{} \text {[momentum]} \\ \Sigma ^i \hat{p}^i\ \psi (x) =\lambda \ p\ \psi (x) &{} \text {[helicity]} \end{array} \right. \end{aligned}$$
(164)

where \(i=1,2,3\), the contracted indices are summed over. The eigenvalues of the momentum, energy and helicity are, \(\mathbf {p}\), \(E=\sqrt{p^2+m^2}\) (with \(p=|\mathbf {p}|\)), \(\lambda =\pm 1\).

With a specific choice of basis (Dirac representation) the \(4\times 4\) matrices \(\alpha ^i\) and \(\beta \) of Dirac hamiltonian and the spin matrices \(\Sigma ^i\) have the following expressions

$$\begin{aligned} \alpha ^i= \left( \begin{array}{cc} 0 &{} \sigma ^i \\ \sigma ^i &{} 0 \end{array} \right) \ \ \beta = \left( \begin{array}{cc} 1 &{} 0 \\ 0 &{} -1 \end{array} \right) \ \ \Sigma ^i= \left( \begin{array}{cc} \sigma ^i &{} 0 \\ 0 &{} \sigma ^i \end{array} \right) \end{aligned}$$
(165)

where \(\sigma ^i\) are the 3 (hermitian, traceless, \(2\times 2\) and well-known) Pauli matrices. The normalized wavefunction is given in terms of a spinor u,

$$\begin{aligned} \psi _\alpha (x)=\frac{e^{-i(E t - \mathbf {p}\mathbf {x})}}{\sqrt{2 E V}}\ u_\alpha (\mathbf {p}\lambda ) \text { where } u_\alpha ^*\, u_\alpha =2 E \end{aligned}$$
(166)

where V is the total volume of the space (that of course plays no role in physical quantities). The explicit expression of the spinor is,

$$\begin{aligned} u(\mathbf {p}\lambda )= \left( \begin{array}{c} \sqrt{E+m}\ \chi \\ \lambda \sqrt{E-m}\ \chi \end{array} \right) \text { where } \sigma ^i p^i\, \chi =\lambda p\, \chi \end{aligned}$$
(167)

Again in Dirac representation, the charge conjugation matrix and the chirality matrix are

$$\begin{aligned} C= \left( \begin{array}{cc} 0 &{} i \sigma ^2 \\ i \sigma ^2 &{} 0 \end{array} \right) \ \ \gamma ^5= \left( \begin{array}{cc} 0 &{}1 \\ 1 &{} 0 \end{array} \right) \end{aligned}$$
(168)

The charge conjugated spinor, defined as

$$\begin{aligned} \psi ^c=C \beta ^t \psi ^* \end{aligned}$$
(169)

satisfies the same conditions as \(\psi \) but with opposite energy, momentum, and spin (thus, with the same helicity as \(\psi \)). This wavefunction is used in a very similar manner as one uses progressive and regressive waves in electromagnetism: \(\psi \) describes a neutrino, that is ongoing to participate in a reaction, \(\psi ^c\) represents an antineutrino, outgoing from the site of the reaction.

Helicity and chirality

At this point, we have a very important remark. The neutrino wavefunctions produced in weak interactions have a well-defined helicity in the ultra relativistic limit. In fact applying the chiral projector \(P_L=(1-\gamma ^5)/2\), that is implied by charged currents, it is easy to prove that

$$\begin{aligned} \begin{array}{c} P_L\ \psi (\mathbf {p}+,x)\approx 0 \text { and } P_L\ \psi (\mathbf {p}-,x)\approx \psi (\mathbf {p}-,x) \text { for neutrinos }\\ P_L\ \psi ^c(\mathbf {p}+,x)\approx \psi ^c(\mathbf {p}+,x) \text { and } P_L\ \psi (\mathbf {p}-,x)\approx 0 \text { for antineutrinos } \end{array} \end{aligned}$$
(170)

that can be expressed in words saying that the (ultrarelativistic) neutrinos have negative helicity (\(\lambda =-1\)) while the antineutrinos have positive helicity (\(\lambda =+1\)). Therefore, whenever the ultra relativistic limit appliesFootnote 43 we have only two wavefunctions that are produced and that matter: those with wavefunctions \(\psi (\mathbf {p}-,x)\) and \(\psi ^c(\mathbf {p}+,x)\). For this reason, it is often possible to adopt the same definition given in the standard model of electroweak interactions (where neutrinos are massless), namely: neutral leptons with negative helicity are neutrinos, those with positive helicity are antineutrinos.

A last comment on the nature of neutrino masses and quantum field theory. A Dirac massive neutrino has 4 states, but the only 2 of them matter in the above assumptions, those corresponding to the particle oscillator \(\hat{a}(\mathbf {p}-)\) and to the antiparticle oscillator \(\hat{b}(\mathbf {p}+)\); a Majorana massive neutrino has only two states, which corresponds to the formal replacement \(\hat{b}(\mathbf {p}+)\rightarrow \hat{a}(\mathbf {p}+)\). See Fig. 1.

Appendix 3: Matter Effect, the General Case

Here we collect arguments and technical remarks from [68] that can be useful if one needs to implement oscillations including matter effect numerically, and/or to describe atmospheric neutrino oscillations in the Earth. A web interface, that calls a routine to perform this type of calculations, can be found in [357].

Let us write in full generality the amplitude of three-flavor neutrino oscillations

$$\begin{aligned} \mathscr {A}=\text {Texp}\left[ -i\int dt \mathscr {H}_\nu (t)\right] =R_{23} R_\delta \left( \begin{array}{ccc} a_{11} &{} a_{12} &{} a_{13} \\ a_{21} &{} a_{22} &{} a_{23} \\ a_{31} &{} a_{32} &{} a_{33} \end{array} \right) R_\delta ^* R_{23}^t \end{aligned}$$
(171)

where \(a_{ij}\) depend upon \(\varDelta m^2_{23}\), \(\theta _{13}\), \(\varDelta m^2_{12}\), \(\theta _{12}\), and \(H=\pm 1\) (the type of mass hierarchy, normal/inverted): see in particular Eqs. 1, 3, 5, 6 of [69]. By solving numerically the evolution equations, we calculate the complex numbers \(a_{ij}\) and therefore the amplitudes and the probabilities. At this level, there is no approximation, except the numerical ones.

When the “solar” \(\varDelta m^2_{12}\) is set to zero—i.e., when its effects are negligible—the only non-zero out-of-diagonal elements \(a_{ij}\) in Eq. 171 are \(a_{13}\) and \(a_{31}\). The CP violating phase \(\delta \) drops out from the probabilities \(P_{\ell \ell '}=|\mathscr {A}_{\ell '\ell }|^2\), that moreover become symmetric, \(P_{\ell \ell '}=P_{\ell '\ell }\) for each \(\ell ,\ell '=e,\mu ,\tau \). Therefore, in this approximation we have 3 independent probabilities and all the other ones are fixed. We can chose, e.g.,

$$\begin{aligned} P_{e\mu }=\sin ^2\theta _{23} |a_{13}|^2,\ P_{e\tau }=\cos ^2\theta _{23} |a_{13}|^2, \ P_{\mu \tau }=\sin ^2 \theta _{23} \cos ^2 \theta _{23} |a_{33}-a_{22}|^2, \end{aligned}$$
(172)

so that, e.g., \(P_{ee}=1- P_{\mu e}-P_{\tau e}=|a_{11}|^2\). From these formulae we obtain

$$\begin{aligned} P_{\mu e}=\sin ^2\theta _{23}\ (1-P_{ee})\text { and } P_{\mu \tau }=\frac{1}{4}\sin ^2 2 \theta _{23} \left| 1-\sqrt{P_{ee}}\ e^{i\hat{\varphi }}\right| ^2, \end{aligned}$$
(173)

where \(\hat{\varphi }\) is a (rapidly varying) phase factor. Two important remarks are in order:

  1. 1.

    The last equation shows that \(P_{\mu e}\) is large in the region where \(P_{ee}\) is small, and that \(P_{\mu \tau }\) remains close to zero in the first non-trivial minimum near \(\hat{\varphi }=2\pi \), even when \(P_{ee}\approx 0.3{-}0.4\) due to matter effect.

  2. 2.

    The sign of \(\varDelta m^2\) controls the sign of the vacuum hamiltonian; therefore, switching between the two mass hierarchies or switching between neutrinos and antineutrinos has the same effect; e.g., \(P_{{e}{\mu }}(\text {IH})=P_{\bar{e}\bar{\mu }}(\text {NH})\).

The first remark is consistent with the numerical findings, that \(P_{\mu e}\) is amplified and \(P_{\mu \tau }\) does not deviate strongly from its behavior in vacuum in the conditions that are relevant for our discussion.

Proceeding further with the approximations, and considering at this point the case of constant matter density, we obtain simple and closed expressions. For the case of normal mass hierarchy, they read:

$$\begin{aligned} \begin{array}{l} a_{13}=a_{31}=-i \sin \widetilde{\varphi } \sin 2 \widetilde{\theta _{13}} \\ a_{11}=\cos \widetilde{\varphi } + i \sin \widetilde{\varphi } \cos 2 \widetilde{\theta _{13}}=a_{33}^* \\ a_{22}=\cos \widetilde{\varphi }' + i \sin \widetilde{\varphi }' \end{array} \end{aligned}$$
(174)

where

$$\begin{aligned} \widetilde{\varphi }'=\frac{{\varDelta m^2} L}{4 E} (1+\varepsilon ) \end{aligned}$$
(175)

From Eqs. 172 and 174, we recover the expression of Eq. 43, used in the above discussion. In the approximation of constant matter density, the phase \(\hat{\varphi }\) entering the expression of the probability \(P_{\mu \tau }\) is given by \(\sqrt{P_{ee}}\cos \hat{\varphi }\equiv \cos \widetilde{\varphi }\cos \widetilde{\varphi }'- \sin \widetilde{\varphi }\sin \widetilde{\varphi }'\cos 2\widetilde{\theta _{13} }\). This is close to the vacuum phase when \(\varepsilon \) is large or small in comparison to 1: in fact, we have \(\cos 2\widetilde{\theta _{13} }\sim \pm 1\) and \(\widetilde{\varphi }\sim \pm \varDelta m^2 L/(4 E) (1-\varepsilon )\) from Eq. 44, so that \(\cos \hat{\varphi }\sim \cos [\varDelta m^2 L/(2 E)]\).

Appendix 4: Treating Cosmological Neutrino Sources

In this appendix we summarize a few important formulae to treat sources of (low or high energy) neutrinos that are located at cosmological distances. A very useful review of practical cosmology is [323]. A recent determination of cosmological parameters is the one due to the Planck Collaboration, [34].

Covariant distance

Cosmological distances are measured by mean of the redhift z, that is connected to the wavelength \(\lambda \) and the frequency \(\nu \) as follows,

$$\begin{aligned} \frac{\lambda _ {\text {observed}}}{\lambda _ {\text {emitted}}}= \frac{\nu _ {\text {emitted}}}{\nu _ {\text {observed}}}=1+z\end{aligned}$$
(176)

The Hubble parameter \(H_0=68\ \frac{\text {km/s}}{\text {Mpc}}\) corresponds to the Hubble scale,

$$\begin{aligned} D_H=\frac{c}{H_0}=1.36\times 10^{27}\text { cm}=4.41\text { Gpc} \end{aligned}$$
(177)

Moreover, we have \(\varOmega _\varLambda =0.69\) and \(\varOmega _m =0.31\) that fix the covariant distance,

$$\begin{aligned} D_c(z)=D_H\ \int _0^z \frac{dz'}{h(z')}\text { where } h(z)=\sqrt{\varOmega _\varLambda +\varOmega _m (1+z)^3} \end{aligned}$$
(178)

For small z, this gives the usual Hubble law case, where the distance is just proportional to z: \(D_c(z)\approx D_H \times z\). E.g., we have \(D_c(0.1)=430\text { Mpc}\approx D_H\times 0.1\) within 2.5%. The covariant distance can be calculated numerically and tabulated, or even approximated analytically [356]. The comoving volume \(V_c(z)\) is a sphere with radius \(D_c(z)\), therefore, we have

$$\begin{aligned} \frac{dV_c}{dz}=4\pi \frac{D_c(z)^2 D_H}{h(z)} \end{aligned}$$
(179)

this relation allows us to convert a distribution over the covariant volume in a distribution over the redshift as in the example given below.

Diffuse flux

If we have a source at redshift z that emits neutrinos (or photons) with a spectrum \(dN_\nu /dE\) (differential in the energy), and if the emission is isotropic, the detected fluence is,

$$\begin{aligned} \frac{dF_\nu }{dE}=\frac{1}{4\pi D_c(z)^2}\times \frac{dN_\nu }{dE'}\end{aligned}$$
(180)

where, due to redshift,

$$\begin{aligned} E'=(1+z) E \end{aligned}$$
(181)

Note that \(E'\) is the emitted (i.e., initial energy), but it is received as E due to the redshift. If there are many of these sources, distributed uniformly and isotropically with a density per comoving volume and per unit time \(\dot{\rho }_ {\text {source}}(z)\), the total diffuse and stationary flux that we will receive a diffuse flux \(\varPhi _ {\text {diffuse}}(E)=\int dV_c\ \dot{\rho }_ {\text {source}}(z)\ {dF_\nu }/{dE}\), that is,

$$\begin{aligned} \varPhi _ {\text {diffuse}}(E)= D_H \int _0^\infty dz\ n(z) \ \frac{dN_\nu }{dE'} \text { where }n(z)=\frac{ \dot{\rho }_ {\text {source}}(z) }{h(z)} \end{aligned}$$
(182)

Appendix 5: Principles of High Energy Neutrino Telescopes

The Cherenkov Radiation

Quanta of light are produced when a charged particle travels through a dielectric transparent medium at a speed greater than the speed of light in that medium. The medium may be any liquid or solid provided it is transparent. These photons are referred to as Cherenkov radiation in honor of the Russian physicist P.A. Cherenkov for his basic research on this phenomenon. Cherenkov radiation consists of a continuous spectrum of wavelengths extending from the ultraviolet region into the visible part of the spectrum peaking at about 420 nm. Only a negligible amount of photon emissions is found in the infrared or microwave regions. Cherenkov photon emission is the result of local polarization along the path of travel of the charged particle with the emission of electromagnetic radiation when the polarized molecules return to their original states. The Cherenkov effect is depicted clearly in Fig. 60, where a charged particle traveling along the vertical axis distorts the electron clouds of atoms in close proximity to the high-speed particle traversing a transparent medium.

Fig. 60
figure 60

Depiction of the production of Cherenkov radiation in a dielectric medium and the resulting wave front expansion.The wave front spreading lengthens the excitation pulse on a time scale that is small in comparison to the fluorescence decay. t is the duration of the light pulse along a line parallel to the axis of the particle at a distance r from the axis. Taken from [19]

The Cherenkov radiation is propagated as a conical wave front, that is, the radiation is emitted as a cone having it’s axis in the direction of particle path. If charged particles move through an isolator of (initially constant) index of refraction n, the latter is always polarized by the electromagnetic field of the flying particle. Usually these polarization superpose destructively and the perturbation can relax while the particle moves on. But if the speed of the particle \(\beta \) is higher than the phase velocity of light in the medium c / n the perturbation can no longer decay since the reaction time of the medium is not high enough and the perturbation remains behind the particle.

Fig. 61
figure 61

Left polarization of an isolator caused by a charged particle traversing it with speed \(v<c/n\). Right polarization of an isolator causing by a charged particle traversing it with speed \(v>c/n\)

Figure 61 shows the two types of polarization of charged particle traversing it with speed \(v<c/n\) (left) or speed \(v>c/n\) (right). The threshold condition for the production of Cherenkov radiation in a transparent medium is given by \(\beta _{thr}=c/n\) where \(\beta \) is the relative phase velocity of the particle, that is, the velocity of the particle divided by the speed of light in the vacuum c; n is the refractive index of the medium that is, for definition, the ratio of the velocity of light in the vacuum to its velocity in the medium. Only charged particles moving with velocity \(\beta \ge \beta _{thr}=c/n\) produce Cherenkov photons in transparent media. For particles with velocity \(\beta \ge \beta _{thr}\) the number of Cherenkov photons emitted per unit photon energy in a medium of particle path length L

$$\begin{aligned} \frac{dN}{dE}=L\frac{\alpha }{\hbar c}sin^{2}\theta \end{aligned}$$

where \(\alpha =1/137\) is the fine structure constant, \(\hbar =6.582\times 10^{-16} eV^{-1} \,\text {cm}^{-1}\) is Planck’s constant divided by \(2\pi \). The number of photons emitted per path length, in the wavelength interval between \(\lambda _{1}\) and \(\lambda _{2}\), can be calculated according to the formula:

$$\begin{aligned} \frac{dN}{d\ell } = 2\pi \alpha z^{2}\left( \frac{1}{\lambda _{2}}-\frac{1}{\lambda _{1}}\right) sin^{2}\theta \end{aligned}$$

where z indicates the particle charge. Over the visible range of wavelengths from \(\lambda _{1}=350\) nm to \(\lambda _{2}=650\) nm, the number of photons N per path length L is

$$\begin{aligned} \frac{N}{L}=490 \cdot sin^{2} \theta \,\mathrm {cm^{-1}} \end{aligned}$$

It is easy to evaluate then that in \(1\,\mathrm {cm}\) of water, a particle with \(\beta = 1\) induces \(N\sim 320\) photons in the spectral range of visible light.

Light propagation in the transparent medium

The propagation of light in water is affected by two phenomena: absorption and scattering. Both phenomena depend on the photon wavelength \(\lambda \). In the first case the photon is lost, in the second one it changes its direction. Moreover, scattering delays the propagation of photons between the points of emission and detection. The parameters generally chosen to describe the two phenomena are:

  • the absorption length \(L_{a}(\lambda )\) (or its reciprocal: the absorption coefficient defined as \(a(\lambda )=1/L_{a}(\lambda )\)) that indicates the distance where the probability that a photon has not been absorbed amount to 1 / e, such that the number N of non-absorbed, photons as a function of photon path length x is given by:

    $$\begin{aligned} N(x)=N_{0} \cdot exp\left( -\frac{x}{L_{a}(\lambda )}\right) \end{aligned}$$
  • the scattering length \(L_{s}(\lambda )\) (or the scattering coefficient \(s(\lambda )=1/L_{s}(\lambda )\)), defined as the distance where the probability that a particle has not been scattered amount to 1/e and the number N of no-scattered photons as a function of photon path length x is given by:

    $$\begin{aligned} N(x)=N_{0} \cdot exp\left( -\frac{x}{L_{s}(\lambda )}\right) \end{aligned}$$
  • the attenuation length \(L_{c}(\lambda )\) (or the attenuation coefficient \(c(\lambda )=a(\lambda )+b(\lambda )\)), defined as the distance where the probability that a particle has not been neither absorbed nor scattered amount to 1/e and the number N of surviving photons as a function of photon path length x is given by:

    $$\begin{aligned} N(x)=N_{0} \cdot exp\left( -\frac{x}{L_{c}(\lambda )}\right) \end{aligned}$$
  • the volume scattering function \(\chi (\theta ,\lambda )\), i.e., the distribution in scattering angle \(\theta \);

  • when the photon detection area is sufficiently large that small scattering angle do not prevent the photon detection is used the geometrical, or effective scattering length defined as

    $$\begin{aligned} L_{s}^{eff}=\frac{L_{s}}{1-\langle cos(\theta ) \rangle } \end{aligned}$$

where \(\langle cos(\theta ) \rangle \) is the mean value of the cosine of the scattering angle.

The knowledge of these parameters is very important for a proper comprehension of the Cherenkov propagation in the detector media. For these reasons all the experimental approaches need a direct measurement of these optical properties (Fig. 62).

Fig. 62
figure 62

Absorption coefficient (left) and effective scattering coefficient (right) in the South Polar ice as functions of depth and wavelength [49]

Also in the water the propagation of light is quantified, for a given wavelength \(\lambda \), by the water inherent optical properties (IOP): the absorption \(a(\lambda )\), scattering \(b(\lambda )\) and attenuation \(c(\lambda )= a(\lambda ) + b(\lambda )\) coefficients. Figure 63 shows the absorption and attenuation lengths measured in the Mediterranean deep Sea site where will be located the KM3NeT-Italy future Cherenkov Neutrino Telescope.

Fig. 63
figure 63

Average absorption and attenuation lengths [324] measured in December 1999 (blue circle), March 2002 (light blue square), May 2002 (purple triangle), August 2002 (red upsidedown triangle) and July 2003 (dark yellow star) and in the site where KM3NeT detector will be constructed, at depths 2850 (left) and \(3250\,\mathrm {m}\) (right). Statistical errors are plotted. A solid black line indicates the values of \(L_{a}(\lambda )\) and \(L_{c}(\lambda )\) for optically pure seawater reported by Smith and Baker [325]

Neutrino interaction detection principle

The detection of the Cherenkov light is made possible by the arrangement of arrays of photo-multiplier tubes (PMTs) housed in transparent pressure spheres which are spread over a large volume in oceans, lakes or glacial ice (Fig. 64).

Fig. 64
figure 64

Detection principle of high-energy muon neutrinos in an underwater/ice Neutrino Telescope. The incoming neutrino interacts with the material around the detector to create a muon. The muon induces the emission of Cherenkov light in the sea water. Photons are then detected by a matrix of light sensors. The original spectrum of light originated by the muon is attenuated in the water such that the dominant wavelength range detected is between 350 and 500 nm

For each PMT it is usually recorded the arrival time and amplitude, sometimes even the full waveform, of Cherenkov light induced by muons or particle showers. In most designs the spheres are attached to vertical strings. The typical PMT spacing along a string is 10–20 m, and the distance between adjacent strings 60–150 m. An underwater (or under-ice) neutrino telescope in principle is able to detect all neutrino types (\(\nu _{\mu }, \nu _{e}, \nu _{\tau }\)) CC or NC interacting inside or near the instrumented volume. It is possible to distinguish two main types of signatures: the track-like events, mainly from \(\nu _{\mu }\) CC-interaction, and the shower-like ones from \(\nu _{\mu , e, \tau }\) NC-interactions and \(\nu _{e, \tau }\) CC-interactions.

Muons as high-energy neutrino signals

The CC-interaction of a \(\nu _{\mu }\) produce a muon track. The passage of these muons through the seawater induces the emission of Cherenkov light, that can be then detected by a three dimensional array of photo-multiplier tubes (PMTs). The most precise measurement of the neutrino direction is achieved reconstructing the trajectory of the leading muon originated in \(\nu _{\mu }\) CC-interactions; this channel is therefore central to all investigations of astrophysical neutrino sources. Using the time and position information of the detected photons, the muon trajectory can be reconstructed, from which the original neutrino direction can be inferred. Muons propagating in water/ice loose energy mainly by ionization, bremsstrahlung, pair production, photonuclear interactions, knock on electrons. Ionization energy losses are dominant at low energies and they are fairly constant and homogeneous over the track. The dE/dx is about 2 MeV/cm at 1 GeV in water. For muon energies above 100 GeV the main energy losses are due to the radiative processes like e+e− pair production, bremsstrahlung and photonuclear processes. These losses are strongly energy dependent and stochastic. Therefore, only an average total energy loss can be calculated. The value and the contributions of different processes to the energy losses for different muon energies are shown in Fig. 65.

Fig. 65
figure 65

Muon energy loss in pure water as a function of its energy [296]

It is convenient to express the average energy loss as:

$$\begin{aligned} -\langle \frac{dE_{\mu }}{dx}\rangle =a(E_{\mu })+b(E_{\mu })\cdot E_{\mu } \end{aligned}$$
(183)

It is worth to mention that radiative processes may produce hadronic and electromagnetic cascades along the muon track, other relativistic particles that in water can induce erenkov light. As already mentioned underwater/ice telescopes are optimized for the detection of muon tracks at energies of the order TeV or above: muons originated by the CC-interactions of such energetic neutrinos may travel for km in water before to be stopped. The properties of the energy losses make possible the muon energy reconstruction: for low muon energies the track length is proportional to the particle energy, instead, for high energies, the amount of the detected light per track length may be used.

Appendix 6: High Energy \(\gamma \)-ray-Neutrino Connection

One can estimate an upper limit on the high-energy neutrino flux from a source of \(\gamma \)-rays, whose \(\gamma \)-rays are not subject to absorption, by assuming that all \(\gamma \)-rays are produced in pp collisions. When the \(\gamma \)-ray obey power-law distributions, we can use the formalism of the Z-factors described in the text [244, 326]. However, as was shown in various works and in particular in [327], more general cases can be treated with relative ease. There are different ways to proceed in the calculations. We mention here two formalisms that are particularly easy-to-use. In both cases, neutrino oscillations are included.

Exponential cut-off

In [328], it was shown that supposing that the primary proton spectrum is given by a power law with index \(\alpha \) and an exponential cut-off energy \(\varepsilon _p\),

$$ \frac{dN_p}{dE_p}= k_p \left( \frac{E_p}{1\text { TeV}} \right) ^{-\alpha } \exp \left( - \frac{E_p}{\varepsilon _p} \right) $$

the neutrino and gamma-ray spectra are approximatively described by the spectra,

$$ \frac{dN_{\gamma /\nu }}{dE_{\gamma /\nu }}= k_{\gamma /\nu } \left( \frac{E_{\gamma /\nu }}{1\text { TeV}} \right) ^{-\varGamma _{\gamma /\nu }} \exp \left( - \sqrt{ \frac{E_{\gamma /\nu }}{\varepsilon _{\gamma /\nu }}} \right) $$

where the parameters are given by,

$$ \begin{array}{l} k_\nu \approx (0.71-0.16 \alpha ) k_\gamma \\ \varGamma _\nu \approx \varGamma _\gamma \approx \alpha -0.1\\ \varepsilon _\nu \approx 0.59 \varepsilon _\gamma \approx \varepsilon _p/40 \end{array} $$

This method of calculation is based on [329]; it includes pion decays and oscillations in the simplest approximation.

Note the differences among the primary and the secondary spectra: (1) in the region where we have power-law distributions, the secondary spectra are a bit harder, due to scaling violation; (2) the cut-off of the proton spectrum is milder in the spectra of secondary particles, due to the contribution from lower energies particles. The overall coefficient of the secondary particles, however, depends upon the amount of target particles.

General case

Assume that the measured \(\gamma \)-ray spectrum \(\phi _{\gamma } (E)\) is purely hadronic (due to cosmic ray-gas collisions) and that it is not affected by propagation. In [330], based on [327], it was shown that the muon neutrino (resp., antineutrino) spectrum are given by the precise relations

$$\begin{aligned} \phi _{\nu _\mu } (E) =\alpha _\pi \ \phi _{\gamma } \left( \textstyle \frac{E}{1-r_\pi } \right) +\alpha _K\ \phi _{\gamma } \left( \textstyle \frac{E}{1-r_K} \right) +\int _0^1{\frac{dx}{x}\ \mathscr {K}_{\nu _\mu } (x)\ \phi _{\gamma }\! \left( \frac{E}{x} \right) } \end{aligned}$$
(184)

where \(\alpha _\pi =0.380\ (0.278)\) and \(\alpha _K=0.013\ (0.009)\) for \(\nu _\mu \) and \(\bar{\nu }_\mu \), respectively, and where \(r_x=(m_\mu /m_x)^2\) with \(x=\pi ,K\). In each expression, the first two contributions describe neutrinos from the two-body decay by pions and kaons, while the third term accounts for neutrinos from muon decay. The kernels for muon neutrinos \(\mathscr {K}_{\nu _\mu }(x)\) and for muon antineutrinos \(\mathscr {K}_{\bar{\nu }_\mu }(x)\), which account also for oscillations from the source to the Earth, are

$$ \small { \mathscr {K}_{\nu _\mu }(x)\!=\! \left\{ \begin{array}{ll} x^2(15.34-28.93x) &{} 0<x \le r_K \\ 0.0165+0.1193x+3.747x^2-3.981x^3 &{} r_K<x< r_\pi \\ (1-x)^2(-0.6698+6.588x) &{} r_\pi \le x<1 \\ \end{array} \right. } $$
$$ \small { \mathscr {K}_{\bar{\nu }_\mu }(x)\!=\! \left\{ \begin{array}{ll} x^2(18.48-25.33x) &{} 0<x \le r_K \\ 0.0251+0.0826x+3.697x^2-3.548x^3 &{} r_K<x< r_\pi \\ (1-x)^2(0.0351+5.864x) &{} r_\pi \le x<1 \\ \end{array} \right. } $$

With this procedure, the expected upper bounds on the neutrino spectra are obtained from the measured \(\gamma \)-ray spectrum in a model-independent way. This method of calculations includes also kaons and it is presumably more accurate than the previous one.

In order to understand the reason why these formulae are valid, we note that the \(\gamma \)-rays from \(\pi ^0\) decay are given by a very simple integral kernel, \(F_\gamma (E)=\int _{E}^\infty dE'\, 2 F_{\pi ^0}(E')/E'\). This can be easily inverted [327],

$$ F_{\pi ^0}(E)=-\frac{E}{2} \frac{dF_\gamma }{dE} $$

Then, using the approximate isospin-invariant distribution of pions, \(F_{\pi ^+}\approx F_{\pi ^-}\approx F_{\pi ^0}= F_\pi \), for the muon neutrinos from \(\pi ^+\rightarrow \mu ^+ \nu _\mu \), we find immediately,

$$ F_{\nu _\mu }(E)=\int _{E/(1-r_\pi )}^\infty \frac{dE'}{1-r_\pi } \frac{F_\pi (E')}{E'}= \frac{F_\gamma (E/(1-r_\pi ))}{2(1-r_\pi )} $$

Some effort is necessary to describe the spectra of the leptons from the muon decay channel in a simple manner (namely to calculate the kernels \(\mathscr {K}\) given above). Most other improvements (e.g., oscillations, other two-body decay channels, etc.) can be implemented easily and directly, instead.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Capone, A., Lipari, P., Vissani, F. (2018). Neutrino Astronomy. In: Aloisio, R., Coccia, E., Vissani, F. (eds) Multiple Messengers and Challenges in Astroparticle Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-65425-6_4

Download citation

Publish with us

Policies and ethics