Skip to main content

Optimization of Right Ventricular Function Preoperatively for LVAD Implantation

  • Chapter
  • First Online:
Mechanical Circulatory Support for Advanced Heart Failure

Abstract

Heart failure (HF) continues to place a significant burden on the current healthcare system. In 2012, the total direct medical cost for HF was $20.9 billion, and this is expected to increase to $53.1 billion in 2030 (representing a 2.5-fold increase). The majority of these costs are related to hospitalization [1]. Left ventricular assist devices (LVAD) were developed to provide end-stage heart failure patients opportunities to wait for a heart on a bridge-to-heart transplant (BTT) strategy or improve survival for those who were not eligible for heart transplantation on a destination therapy (DT) pathway. Since the Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure (REMATCH) trial reported a 48% reduction in risk of death in patients with advanced heart failure with the HeartMate XVE LVAD versus medical management, there has been an exponential increase in the number of mechanical circulatory assist devices for NYHA class IIIB/IV, stage D heart failure [2]. The HeartMate II study reported a significant survival advantage of continuous-flow ventricular assist devices (CF-VAD) over the older pulsatile HeartMate XVE device in a BTT strategy and opened the door for continuous-flow VADs (CF-VAD) that have since become standard of care [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Heidenreich PA, Albert NM, Allen LA, et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail. 2013;6(3):606–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rose E, Gelijns A, Moskowitz A, et al. Long-term mechanical left ventricular assistance for end-stage heart failure. N Engl J Med. 2001;345:1435–43.

    Article  CAS  PubMed  Google Scholar 

  3. Miller LW, Pagani FD, Russell SD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357:885–96.

    Article  CAS  PubMed  Google Scholar 

  4. Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED, Myers SL, Miller MA, Baldwin JT, Young JB. Seventh INTERMACS annual report: 15,000 patients and counting. J Heart Lung Transplant. 2015;34(12):1495–504.

    Article  PubMed  Google Scholar 

  5. Takeda K, et al. Outcome of unplanned right ventricular assist device support for severe right heart failure after implantable left ventricular assist device insertion. J Heart Lung Transplant. 2014;33(2):141–8.

    Article  PubMed  Google Scholar 

  6. Kirklin JK, et al. Second INTERMACS annual report: more than 1,000 primary left ventricular assist device implants. J Heart Lung Transplant. 2010;29(1):1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Haddad F, et al. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117(11):1436–48.

    Article  PubMed  Google Scholar 

  8. Santamore WP, Dell’Italia LJ. Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function. Prog Cardiovasc Dis. 1998;40(4):289–308.

    Article  CAS  PubMed  Google Scholar 

  9. Santamore WP, Gray L Jr. Significant left ventricular contributions to right ventricular systolic function. Mechanism and clinical implications. Chest. 1995;107(4):1134–45.

    Article  CAS  PubMed  Google Scholar 

  10. Hoffman D, Sisto D, Frater RW, Nikolic SD. Left-to- right ventricular interaction with a noncontracting right ventricle. J Thorac Cardiovasc Surg. 1994;107:1496–502.

    CAS  PubMed  Google Scholar 

  11. Leo G. Kevin, Matthew Barnard; right ventricular failure. Contin Educ Anaesth Crit Care Pain. 2007;7(3):89–94.

    Article  Google Scholar 

  12. Dell’Italia LJ, Walsh RA. Application of a time varying elastance model to right ventricular performance in man. Cardiovasc Res. 1988;22:864–74.

    Article  PubMed  Google Scholar 

  13. Feneley MP, Gavaghan TP, Baron DW, Branson JA, Roy PR, Morgan JJ. Contribution of left ventricular contraction to the generation of right ventricular systolic pressure in the human heart. Circulation. 1985;71:473–80.

    Article  CAS  PubMed  Google Scholar 

  14. Klima UP, Lee MY, Guerrero JL, et al. Determinants of maximal right ventricular function: role of septal shifts. J Thorac Cardiovasc Surg. 2002;123:72–80.

    Article  PubMed  Google Scholar 

  15. Bernheim D. De l’asystolie veineuse dans rhyper tro-phie due coer gauche par stenose concomitante du ventricule droit. Rev Med. 1910;39:785.

    Google Scholar 

  16. Henderson Y, Prince AL. The relative systolic discharges of the right and left ventricles and their bearing on pulmonary congestion and depletion. Heart. 1914;5:217–22.

    Google Scholar 

  17. Dexter L. Atrial septal defect. Br Heart J. 1956;18:209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lang RM, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39.e14.

    Article  PubMed  Google Scholar 

  19. Lang RM, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18(12):1440–63.

    Article  PubMed  Google Scholar 

  20. Cameli M, et al. Evaluation of right ventricular function in the management of patients referred for left ventricular assist device therapy. Transplant Proc. 2015;47(7):2166–8.

    Article  CAS  PubMed  Google Scholar 

  21. Grant AD, et al. Independent and incremental role of quantitative right ventricular evaluation for the prediction of right ventricular failure after left ventricular assist device implantation. J Am Coll Cardiol. 2012;60(6):521–8.

    Article  PubMed  Google Scholar 

  22. Morine KJ, et al. Pulmonary artery pulsatility index is associated with right ventricular failure after left ventricular assist device surgery. J Card Fail. 2016;22(2):110–6.

    Article  PubMed  Google Scholar 

  23. Dang NC, Topkara VK, Mercando M, et al. Right heart failure after left ventricular assist device implantation in patients with chronic congestive heart failure. J Heart Lung Transplant. 2006;25:1–6.

    Article  PubMed  Google Scholar 

  24. Kukucka M, Stepanenko A, Potapov E, Krabatsch T, Redlin M, Mladenow A, et al. Right-to-left ventricular end-diastolic diameter ratio and prediction of right ventricular failure with continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2011;30:64–9.

    Article  PubMed  Google Scholar 

  25. Matthews JC, Koelling TM, Pagani FD, et al. The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol. 2008;51:2163–72.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kormos RL, Teuteberg JJ, Pagani FD, et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg. 2010;139:1316–24.

    Article  PubMed  Google Scholar 

  27. Ochiai Y, McCarthy PM, Smedira NG, et al. Predictors of severe right ventricular failure after implantable left ventricular assist system insertion: analysis of 245 patients. Circulation. 2002;106(12 Suppl 1):I198–202.

    PubMed  Google Scholar 

  28. Atluri P, Goldstone AB, Fairman AS, et al. Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era. Ann Thorac Surg. 2013;96:857–64.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS). Appendix A: adverse event definitions: adult and pediatric patients; 2013.

    Google Scholar 

  30. Dandel M, Krabatsch T, Falk V. Left ventricular vs. biventricular mechanical support: decision making and strategies for avoidance of right heart failure after left ventricular assist device implantation. Int J Cardiol. 2015;198:241–50.

    Article  PubMed  Google Scholar 

  31. Ondrus T, et al. Right ventricular myocardial infarction: from pathophysiology to prognosis. Exp Clin Cardiol. 2013;18(1):27–30.

    PubMed  PubMed Central  Google Scholar 

  32. Farrar DJ, Compton PG, Hershon JJ, et al. Right heart interaction with the mechanically assisted left heart. World J Surg. 1985;9:89–102.

    Article  CAS  PubMed  Google Scholar 

  33. Moon MR, Bolger AF, DeAnda A, et al. Septal function during left ventricular unloading. Circulation. 1997;95:1320–7.

    Article  CAS  PubMed  Google Scholar 

  34. Morgan JA, Paone G, Nemeh HW, et al. Impact of continuous-flow left ventricular assist device support on right ventricular function. J Heart Lung Transplant. 2013;32:398–403.

    Article  PubMed  Google Scholar 

  35. Piacentino V 3rd, Williams ML, Depp T, Garcia-Huerta K, Blue L, Lodge AJ, Mackensen GB, Swaminathan M, Rogers JG, Milano CA. Impact of tricuspid valve regurgitation in patients treated with implantable left ventricular assist devices. Ann Thorac. 2011;91:1342–7.

    Article  Google Scholar 

  36. Brisco M, Sundareswaran K, Milano, et al. The incidence, risk, and consequences of atrial arrhythmias in patients with continuous-flow left ventricular assist devices. J Card Surg. 2014;29:572–80.

    Article  PubMed  Google Scholar 

  37. Cantillon DJ, Saliba WI, Wazni OM, Kanj M, Starling RC, Tang WH, Wilkoff BL. Low cardiac output associated with ventricular tachyarrhythmias in continuous-flow LVAD recipients with a concomitant ICD (LoCo VT study). J Heart Lung Transplant. 2014;33(3):318–20.

    Article  PubMed  Google Scholar 

  38. Kalogeropoulos AP, et al. Validation of clinical scores for right ventricular failure prediction after implantation of continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2015;34(12):1595–603.

    Article  PubMed  Google Scholar 

  39. Fukamachi K, McCarthy PM, Smedira NG, Vargo RL, Starling RC, Young JB. Preoperative risk factors for right ventricular failure after implantable left ventricular assist device insertion. Ann Thorac Surg. 1999;68(6):2181–4.

    Article  CAS  PubMed  Google Scholar 

  40. Drakos SG, Janicki L, Horne BD, et al. Risk factors predictive of right ventricular failure after left ventricular assist device implantation. Am J Cardiol. 2010;105:1030–5.

    Article  PubMed  Google Scholar 

  41. Fitzpatrick JF 3rd, Frederick JR, Hsu VM, et al. Risk score derived from preoperative data analysis predicts the need for biventricular mechanical circulatory support. J Heart Lung Transplant. 2008;27:1286–92.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Puwanant S, Hamilton KK, Klodell CT, et al. Tricuspid annular motion as a predictor of severe right ventricular failure after left ventricular assist device implantation. J Heart Lung Transplant. 2008;27:1102–7.

    Article  PubMed  Google Scholar 

  43. Vivo RP, Cordero-Reyes AM, Qamar U, et al. Increased right-to-left ventricle diameter ratio is a strong predictor of right ventricular failure after left ventricular assist device. J Heart Lung Transplant. 2013;32:792–9.

    Article  PubMed  Google Scholar 

  44. Cameli M, Lisi M, Righini FM, et al. Speckle tracking echocardiography as a new technique to evaluate right ventricular function in patients with left ventricular assist device therapy. J Heart Lung Transplant. 2013;32:424–30.

    Article  PubMed  Google Scholar 

  45. Kiernan MS, French AL, DeNofrio D, Parmar YJ, Pham DT, Kapur NK, Pandian NG, Patel AR. Preoperative three-dimensional echocardiography to assess risk of right ventricular failure after left ventricular assist device surgery. J Card Fail. 2015;21(3):189–97.

    Article  PubMed  Google Scholar 

  46. Cordtz J, et al. Right ventricular failure after implantation of a continuous-flow left ventricular assist device: early haemodynamic predictors. Eur J Cardiothorac Surg. 2014;45(5):847–53.

    Article  PubMed  Google Scholar 

  47. Lampert BC, Teuteberg JJ. Right ventricular failure after left ventricular assist devices. J Heart Lung Transplant. 2015;34(9):1123–30.

    Article  PubMed  Google Scholar 

  48. Van Meter CH Jr. Right heart failure: best treated by avoidance. Ann Thorac Surg. 2001;71(3):S220–2.

    Article  PubMed  Google Scholar 

  49. Argiriou M, et al. Right heart failure post left ventricular assist device implantation. J Thorac Dis. 2014;6(Suppl 1):S52–9.

    PubMed  PubMed Central  Google Scholar 

  50. Kaplon RJ, et al. Vitamin K reduces bleeding in left ventricular assist device recipients. J Heart Lung Transplant. 1999;18(4):346–50.

    Article  CAS  PubMed  Google Scholar 

  51. Houston BA, et al. Right ventricular afterload sensitivity dramatically increases after left ventricular assist device implantation: a multi-center hemodynamic analysis. J Heart Lung Transplant. 2016;35(7):868–76.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Marzec LN, Ambardekar AV. Preoperative evaluation and perioperative management of right ventricular failure after left ventricular assist device implantation. Semin Cardiothorac Vasc Anesth. 2013;17(4):249–61.

    Article  PubMed  Google Scholar 

  53. Potapov E, Meyer D, Swaminathan M, et al. Inhaled nitric oxide after left ventricular assist device implantation: a prospective, randomized, double-blind, multicenter, placebo-controlled trial. J Heart Lung Transplant. 2011;30(8):870–8.

    PubMed  Google Scholar 

  54. Tedford RJ, Hemnes AR, Russell SD, et al. PDE5A inhibitor treatment of persistent pulmonary hypertension after mechanical circulatory support. Circ Heart Fail. 2008;1(4):213–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Klodell CT Jr, et al. Effect of sildenafil on pulmonary artery pressure, systemic pressure, and nitric oxide utilization in patients with left ventricular assist devices. Ann Thorac Surg. 2007;83(1):68–71; discussion 71.

    Google Scholar 

  56. Baker WL, Radojevic J, Gluck JA. Systematic review of phosphodiesterase-5 inhibitor use in right ventricular failure following left ventricular assist device implantation. Artif Organs. 2016;40(2):123–8.

    Article  CAS  PubMed  Google Scholar 

  57. Fitzpatrick JR, Frederick JR, Hiesinger W, et al. Early planned institution of biventricular mechanical circulatory support results in improved outcomes compared with delayed conversion of a left ventricular assist device to a biventricular assist device. J Thorac Cardiovasc Surg. 2009;137:971–7.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Morgan JA, John R, Lee BJ, et al. Is severe right ventricular failure in left ventricular assist device recipients a risk factor for unsuccessful bridging to transplant and post-transplant mortality. Ann Thorac Surg. 2004;77:859–63.

    Article  PubMed  Google Scholar 

  59. Boeken U, et al. Intraaortic balloon pumping in patients with right ventricular insufficiency after cardiac surgery: parameters to predict failure of IABP support. Thorac Cardiovasc Surg. 2009;57(6):324–8.

    Article  CAS  PubMed  Google Scholar 

  60. Tanaka A, et al. The subclavian intraaortic balloon pump: a compelling bridge device for advanced heart failure. Ann Thorac Surg. 2015;100(6):2151–2157; discussion 2157–8.

    Google Scholar 

  61. Darrah WC, et al. Intraaortic balloon counterpulsation improves right ventricular failure resulting from pressure overload. Ann Thorac Surg. 1997;64(6):1718–23; discussion 1723–4.

    Google Scholar 

  62. Ntalianis A, et al. Prolonged intra-aortic balloon pump support in biventricular heart failure induces right ventricular reverse remodeling. Int J Cardiol. 2015;192:3–8.

    Article  PubMed  Google Scholar 

  63. Sintek MA, et al. Intra-aortic balloon Counterpulsation in patients with chronic heart failure and cardiogenic shock: clinical response and predictors of stabilization. J Card Fail. 2015;21(11):868–76.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Imamura T, et al. Prophylactic intra-aortic balloon pump before ventricular assist device implantation reduces perioperative medical expenses and improves postoperative clinical course in INTERMACS profile 2 patients. Circ J. 2015;79(9):1963–9.

    Article  PubMed  Google Scholar 

  65. Kapur NK, Paruchuri V, Korabathina R, et al. Effects of percutaneous mechanical circulatory support device for medically refractory right ventricular failure. J Heart Lung Transplant. 2011;30:1360–7.

    Article  PubMed  Google Scholar 

  66. Lima B, et al. Effectiveness and safety of the Impella 5.0 as a bridge to cardiac transplantation or durable left ventricular assist device. Am J Cardiol. 2016;117(10):1622–8.

    Article  PubMed  Google Scholar 

  67. Bansal A, et al. Using the minimally invasive Impella 5.0 via the right subclavian artery cutdown for acute on chronic decompensated heart failure as a bridge to decision. Ochsner J. 2016;16(3):210–6.

    PubMed  PubMed Central  Google Scholar 

  68. Wang Y, et al. Decision tree for adjuvant right ventricular support in patients receiving a left ventricular assist device. J Heart Lung Transplant. 2012;31(2):140–9.

    Article  PubMed  Google Scholar 

  69. Schibilsky D, et al. Impella 5.0 support in INTERMACS II cardiogenic shock patients using right and left axillary artery access. Artif Organs. 2015;39(8):660–3.

    Article  PubMed  Google Scholar 

  70. Bhama JK, Kormos RL, Toyoda Y, et al. Clinical experience using the Levitronix CentriMag system for temporary right ventricular mechanical support. J Heart Lung Transplant. 2009;28:971–6.

    Article  PubMed  Google Scholar 

  71. Copeland JG, Smith RG, Arabia FA, et al. Cardiac replacement with a total artificial heart as a bridge to transplantation. N Engl J Med. 2004;351:859.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reynolds Delgado III M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gohar, S., Sheth, S., Delgado, R. (2018). Optimization of Right Ventricular Function Preoperatively for LVAD Implantation. In: Morgan, J., Civitello, A., Frazier, O. (eds) Mechanical Circulatory Support for Advanced Heart Failure . Springer, Cham. https://doi.org/10.1007/978-3-319-65364-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65364-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65363-1

  • Online ISBN: 978-3-319-65364-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics