Skip to main content

How Good Can a Face Identifier Be Without Learning?

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 693))

  • 1103 Accesses

Abstract

Constructing discriminative features is an essential issue in developing face recognition algorithms. There are two schools in how features are constructed: hand-crafted features and learned features from data. A clear trend in the face recognition community is to use learned features to replace hand-crafted ones for face recognition, due to the superb performance achieved by learned features through Deep Learning networks. Given the negative aspects of database-dependent solutions, we consider an alternative and demonstrate that, for good generalization performance, developing face recognition algorithms by using hand-crafted features is surprisingly promising when the training dataset is small or medium sized. We show how to build such a face identifier with our Block Matching method which leverages the power of the Gabor phase in face images. Although no learning process is involved, empirical results show that the performance of this “designed” identifier is comparable (superior) to state-of-the-art identifiers and even close to Deep Learning approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24670-1_36

    Chapter  Google Scholar 

  2. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006)

    Article  MATH  Google Scholar 

  3. Ashraf, A.B., Lucey, S., Chen, T.: Learning patch correspondences for improved viewpoint invariant face recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  4. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)

    Article  MATH  Google Scholar 

  5. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  6. Cament, L.A., Castillo, L.E., Perez, J.P., Galdames, F.J., Perez, C.A.: Fusion of local normalization and Gabor entropy weighted features for face identification. Pattern Recogn. 47(2), 568–577 (2014)

    Article  Google Scholar 

  7. Cao, X., Wei, Y., Wen, F., Sun, J.: Face alignment by explicit shape regression. Int. J. Comput. Vis. 107(2), 177–190 (2014)

    Article  MathSciNet  Google Scholar 

  8. Chai, Z., Sun, Z., Mendez-Vazquez, H., He, R., Tan, T.: Gabor ordinal measures for face recognition. IEEE Trans. Inf. Forensics Secur. 9(1), 14–26 (2014)

    Article  Google Scholar 

  9. Chan, T.-H., Jia, K., Gao, S., Lu, J., Zeng, Z., Ma, Y.: PCANet: a simple deep learning baseline for image classification? IEEE Trans. Image Process. 24(12), 5017–5032 (2015)

    Article  MathSciNet  Google Scholar 

  10. Chen, D., Cao, X., Wang, L., Wen, F., Sun, J.: Bayesian face revisited: a joint formulation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 566–579. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33712-3_41

    Chapter  Google Scholar 

  11. Chan, C.H., Tahir, M.A., Kittler, J., Pietikainen, M.: Multiscale local phase quantization for robust component-based face recognition using kernel fusion of multiple descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1164–1177 (2013)

    Article  Google Scholar 

  12. Cui, Z., Li, W., Xu, D., Shan, S., Chen, X.: Fusing robust face region descriptors via multiple metric learning for face recognition in the wild. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3554–3561. IEEE (2013)

    Google Scholar 

  13. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  14. Daugman, J.: How iris recognition works. IEEE Trans. Circ. Syst. Video Technol. 14(1), 21–30 (2004)

    Article  Google Scholar 

  15. Daugman, J.: Probing the uniqueness and randomness of iriscodes: results from 200 billion iris pair comparisons. Proc. IEEE 94(11), 1927–1935 (2006)

    Article  Google Scholar 

  16. Gao, Y., Wang, Y., Zhu, X., Feng, X., Zhou, X.: Weighted Gabor features in unitary space for face recognition. In: 7th International Conference on Automatic Face and Gesture Recognition, FGR 2006, p. 6. IEEE (2006)

    Google Scholar 

  17. Givens, G.H., Beveridge, J.R., Lui, Y.M., Bolme, D.S., Draper, B.A., Phillips, P.J.: Biometric face recognition: from classical statistics to future challenges. Wiley Interdisc. Rev.: Comput. Stat. 5(4), 288–308 (2013)

    Article  Google Scholar 

  18. Hu, J., Lu, J., Tan, Y.-P.: Discriminative deep metric learning for face verification in the wild. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1875–1882, June 2014

    Google Scholar 

  19. Hua, G., Akbarzadeh, A.: A robust elastic and partial matching metric for face recognition. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2082–2089. IEEE (2009)

    Google Scholar 

  20. Huang, G., Lee, H., Learned-Miller, E.: Learning hierarchical representations for face verification with convolutional deep belief networks. In 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2518–2525 (2012)

    Google Scholar 

  21. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical report 07-49, University of Massachusetts, Amherst (2007)

    Google Scholar 

  22. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. arXiv preprint. arXiv:1408.5093 (2014)

  23. Kan, M., Shan, S., Chang, H., Chen, X.: Stacked progressive auto-encoders (spae) for face recognition across poses. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1883–1890. IEEE (2014)

    Google Scholar 

  24. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105. Curran Associates Inc. (2012)

    Google Scholar 

  25. Lades, M., Vorbruggen, J.C., Buhmann, J., Lange, J., von der Malsburg, C., Wurtz, R.P., Konen, W.: Distortion invariant object recognition in the dynamic link architecture. IEEE Trans. Comput. 42(3), 300–311 (1993)

    Article  Google Scholar 

  26. Li, H., Hua, G., Lin, Z., Brandt, J., Yang, J.: Probabilistic elastic matching for pose variant face verification. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3499–3506. IEEE (2013)

    Google Scholar 

  27. Liu, C., Wechsler, H.: Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans. Image Process. 11(4), 467–476 (2002)

    Article  Google Scholar 

  28. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  29. Mu, M., Ruan, Q., Guo, S.: Shift and gray scale invariant features for palmprint identification using complex directional wavelet and local binary pattern. Neurocomputing 74(17), 3351–3360 (2011)

    Article  Google Scholar 

  30. Oppenheim, A.V., Lim, J.S.: The importance of phase in signals. Proc. IEEE 69(5), 529–541 (1981)

    Article  Google Scholar 

  31. Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: Proceedings of the British Machine Vision Conference (2015)

    Google Scholar 

  32. Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of the face recognition grand challenge. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 947–954. IEEE (2005)

    Google Scholar 

  33. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The feret evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)

    Article  Google Scholar 

  34. Pinto, N., DiCarlo, J.J., Cox, D.D.: How far can you get with a modern face recognition test set using only simple features? In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 2591–2598. IEEE (2009)

    Google Scholar 

  35. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  36. Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression (PIE) database. In: Fifth IEEE International Conference on Automatic Face and Gesture Recognition, Proceedings, pp. 46–51. IEEE (2002)

    Google Scholar 

  37. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556 (2014)

    Google Scholar 

  38. Su, Y., Shan, S., Chen, X., Gao, W.: Hierarchical ensemble of global and local classifiers for face recognition. IEEE Trans. Image Process. 18(8), 1885–1896 (2009)

    Article  MathSciNet  Google Scholar 

  39. Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting 10,000 classes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1891–1898 (2013)

    Google Scholar 

  40. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: 2014 IEEE 12th International Conference on Computer Vision (2014)

    Google Scholar 

  41. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2013)

    Google Scholar 

  42. Tan, X., Triggs, B.: Fusing Gabor and LBP feature sets for kernel-based face recognition. In: Zhou, S.K., Zhao, W., Tang, X., Gong, S. (eds.) AMFG 2007. LNCS, vol. 4778, pp. 235–249. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75690-3_18

    Chapter  Google Scholar 

  43. Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Proceedings of CVPR 1991, pp. 586–591. IEEE (1991)

    Google Scholar 

  44. Vedaldi, A., Lenc, K.: Matconvnet-convolutional neural networks for matlab. arXiv preprint arXiv:1412.4564 (2014)

  45. Wiskott, L., Fellous, J.-M., Kuiger, N., Von Der Malsburg, C.: Face recognition by elastic bunch graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 775–779 (1997)

    Article  Google Scholar 

  46. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

    Article  Google Scholar 

  47. Xie, S., Shan, S., Chen, X., Chen, J.: Fusing local patterns of Gabor magnitude and phase for face recognition. IEEE Trans. Image Process. 19(5), 1349–1361 (2010)

    Article  MathSciNet  Google Scholar 

  48. Yang, M., Zhang, L., Shiu, S.-K., Zhang, D.: Robust kernel representation with statistical local features for face recognition. IEEE Trans. Neural Netw. Learn. Syst. 24(6), 900–912 (2013)

    Article  Google Scholar 

  49. Yi, D., Lei, Z., Li, S.Z.: Towards pose robust face recognition. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3539–3545. IEEE (2013)

    Google Scholar 

  50. Yi, D., Lei, Z., Liao, S., Li, S.Z.; Learning face representation from scratch. arXiv preprint arXiv:1411.7923 (2014)

  51. Zhang, W., Shan, S., Gao, W., Chen, X., Zhang, H.: Local Gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 1, pp. 786–791. IEEE (2005)

    Google Scholar 

  52. Zhang, B., Shan, S., Chen, X., Gao, W.: Histogram of Gabor phase patterns (HGPP): a novel object representation approach for face recognition. IEEE Trans. Image Process. 16(1), 57–68 (2007)

    Article  MathSciNet  Google Scholar 

  53. Zhang, W., Shan, S., Qing, L., Chen, X., Gao, W.: Are Gabor phases really useless for face recognition? Pattern Anal. Appl. 12(3), 301–307 (2009)

    Article  MathSciNet  Google Scholar 

  54. Zhang, B., Gao, Y., Zhao, S., Liu, J.: Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans. Image Process. 19(2), 533–544 (2010)

    Article  MathSciNet  Google Scholar 

  55. Zhong, Y., Li, H.: Is block matching an alternative tool to LBP for face recognition? In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 723–727 (2014)

    Google Scholar 

  56. Zhong, Y., Li, H.: Leveraging Gabor phase for face identification in controlled scenarios. In: Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, pp. 49–58 (2016)

    Google Scholar 

  57. Zhou, E., Cao, Z., Yin, Q.: Naive-deep face recognition: touching the limit of LFW benchmark or not? arXiv preprint. arXiv:1501.04690 (2015)

  58. Zou, J., Ji, Q., Nagy, G.: A comparative study of local matching approach for face recognition. IEEE Trans. Image Process. 16(10), 2617–2628 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhong, Y., Hedman, A., Li, H. (2017). How Good Can a Face Identifier Be Without Learning?. In: Braz, J., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2016. Communications in Computer and Information Science, vol 693. Springer, Cham. https://doi.org/10.1007/978-3-319-64870-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64870-5_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64869-9

  • Online ISBN: 978-3-319-64870-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics