Skip to main content

Boron Isotopes as a Tracer of Subduction Zone Processes

  • Chapter
  • First Online:
Boron Isotopes

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

This chapter reviews recycling of boron (B) and its isotopes in subduction zones. It discusses the profound changes in B concentrations and B isotope ratios of various materials involved in convergent margin evolution, in particular highlighting the fate and evolution of progressively dehydrating subducting slabs and the behavior of B during burial and subsequent metamorphism. We review various models used to parameterize these complex and often poorly understood processes and critically evaluate the available data from the literature. We proceed by reviewing B isotope data from mafic arc volcanic rocks and explore systematic variations with subduction zone geometry as well as familiar geochemical tracers of subduction processes. Finally, the role of serpentinisation in the mantle wedge is discussed in the light of new geochemical and petrological insights on the importance of serpentinites and subduction erosion. We provide recommendations for further research on B isotopes in subduction zones and directions where we think this exciting stable isotope tracer may make the biggest impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alt JC, Garrido CJ, Shanks WC, Turchyn A, Padron-Navarta JA, Sanchez-Vizcaino VL, Pugnaire MTG, Marchesi C (2012) Recycling of water, carbon, and sulfur during subduction of serpentinites: a stable isotope study of Cerro del Almirez. Spain Earth Planet Sci Lett 327:50–60

    Article  Google Scholar 

  • Angiboust S, Pettke T, De Hoog JCM, Caron B, Oncken O (2014) Channelized fluid flow and eclogite-facies metasomatism along the subduction shear zone. J Petrol 55(5):883–916

    Article  Google Scholar 

  • Bebout GE (1991) Field-based evidence for devolatilization in subduction zones—implications for arc magmatism. Science 251(4992):413–416

    Article  Google Scholar 

  • Bebout GE (2013) Metasomatism in subduction zones of subducted oceanic slabs, mantle wedges, and the slab-mantle interface. The Role of Fluids in Terrestrial and Extraterrestrial Processes, Metasomatism and the Chemical Transformation of Rock, pp 289–349

    Google Scholar 

  • Bebout GE, Barton MD (2002) Tectonic and metasomatic mixing in a high-T, subduction-zone melange—insights into the geochemical evolution of the slab-mantle interface. Chem Geol 187(1–2):79–106

    Article  Google Scholar 

  • Bebout GE, Nakamura E (2003) Record in metamorphic tourmalines of subduction-zone devolatilization and boron cycling. Geology 31(5):407–410

    Article  Google Scholar 

  • Bebout GE, Ryan JG, Leeman WP (1993) B-Be systematics in subduction-related metamorphic rocks—characterization of the subducted component. Geochim Cosmochim Acta 57(10):2227–2237

    Article  Google Scholar 

  • Bebout GE, Ryan JG, Leeman WP, Bebout AE (1999) Fractionation of trace elements by subduction-zone metamorphism—effect of convergent-margin thermal evolution. Earth Planet Sci Lett 171(1):63–81

    Article  Google Scholar 

  • Bebout GE, Bebout AE, Graham CM (2007) Cycling of B, Li, and LILE (K, Cs, Rb, Ba, Sr) into subduction zones: SIMS evidence from micas in high-P/T metasedimentary rocks. Chem Geol 239(3–4):284–304

    Article  Google Scholar 

  • Benton LD, Ryan JG, Tera F (2001) Boron isotope systematics of slab fluids as inferred from a serpentine seamount Mariana forearc. Earth Planet Sci Lett 187(3–4):273–282

    Article  Google Scholar 

  • Benton LD, Ryan JG, Savov IP (2004) Lithium abundance and isotope systematics of forearc serpentinites, Conical Seamount, Mariana forearc: insights into the mechanics of slab-mantle exchange during subduction. Geochem Geophys Geosyst 5:Q08J12

    Google Scholar 

  • Boschi C, Dini A, Fruh-Green GL, Kelley DS (2008) Isotopic and element exchange during serpentinization and metasomatism at the Atlantis Massif (MAR 30 degrees N): insights from B and Sr isotope data. Geochim Cosmochim Acta 72(7):1801–1823

    Article  Google Scholar 

  • Boschi C, Bonatti E, Ligi M, Brunelli D, Cipriani A, Dallai L, D’Orazio M, Fruh-Green GL, Tonarini S, Barnes JD, Bedini RM (2013) Serpentinization of mantle peridotites along an uplifted lithospheric section, Mid Atlantic Ridge at 11 degrees N. Lithos 178:3–23

    Article  Google Scholar 

  • Bouvier AS, Métrich N, Deloule E (2008) Slab-derived fluids in the magma sources of St. Vincent (Lesser Antilles Arc): volatile and light element imprints. J Petrol 49(8):1427–1448

    Google Scholar 

  • Bouvier AS, Metrich N, Deloule E (2010) Light elements, volatiles, and stable isotopes in basaltic melt inclusions from Grenada, Lesser Antilles: inferences for magma genesis. Geochem Geophys Geosyst 11:Q09004

    Article  Google Scholar 

  • Cagnioncle AM, Parmentier EM, Elkins-Tanton LT (2007) Effect of solid flow above a subducting slab on water distribution and melting at convergent plate boundaries. J Geophys Res Solid Earth 112:B9 Artn B09402

    Google Scholar 

  • Cann JR, McCaig AM, Yardley BWD (2015) Rapid generation of reaction permeability in the roots of black smoker systems, Troodos ophiolite. Cyprus Geofluids 15(1–2):179–192

    Article  Google Scholar 

  • Cannaò E, Agostini S, Scambelluri M, Tonarini S, Godard M (2015) B, Sr and Pb isotope geochemistry of high-pressure Alpine metaperidotites monitors fluid-mediated element recycling during serpentinite dehydration in subduction melange (Cima di Gagnone, Swiss Central Alps). Geochim Cosmochim Acta 163:80–100

    Article  Google Scholar 

  • Cannaò E, Scambelluri M, Agostini S, Tonarini S, Godard M (2016) Linking serpentinite geochemistry with tectonic evolution at the subduction plate-interface: the voltri massif case study (Ligurian Western Alps, Italy). Geochim Cosmochim Acta 190:115–133

    Article  Google Scholar 

  • Cannat M (1993) Emplacement of mantle rocks in the sea-floor at midocean ridges. J Geophys Res Solid Earth 98(B3):4163–4172

    Article  Google Scholar 

  • De Hoog JCM, Hattori K, Jung H (2014) Titanium- and water-rich metamorphic olivine in high-pressure serpentinites from the Voltri Massif (Ligurian Alps, Italy): evidence for deep subduction of high-field strength and fluid-mobile elements. Contrib Mineral Petrol 167(3):Art 990

    Google Scholar 

  • Debret B, Andreani M, Godard M, Nicollet C, Schwartz S, Lafay R (2013) Trace element behavior during serpentinization/de-serpentinization of an eclogitized oceanic lithosphere: a LA-ICPMS study of the Lanzo ultramafic massif (Western Alps). Chem Geol 357:117–133

    Article  Google Scholar 

  • Deschamps F, Guillot S, Godard M, Chauvel C, Andreani M, Hattori K (2010) In situ characterization of serpentinites from forearc mantle wedges: timing of serpentinization and behavior of fluid-mobile elements in subduction zones. Chem Geol 269(3–4):262–277

    Article  Google Scholar 

  • Deschamps F, Guillot S, Godard M, Andreani M, Hattori K (2011) Serpentinites act as sponges for fluid-mobile elements in abyssal and subduction zone environments. Terra Nova 23(3):171–178

    Article  Google Scholar 

  • Dilek Y, Furnes H (2011) Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol Soc Am Bull 123(3–4):387–411

    Article  Google Scholar 

  • Domanik KJ, Holloway JR (1996) The stability and composition of phengitic muscovite and associated phases from 5.5 to 11 Gpa: implications for deeply subducted sediments. Geochim Cosmochim Acta 60(21):4133–4150

    Article  Google Scholar 

  • Domanik KJ, Hervig RL, Peacock SM (1993) Beryllium and boron in subduction zone minerals—an ion microprobe study. Geochim Cosmochim Acta 57(21–22):4997–5010

    Article  Google Scholar 

  • England PC, Katz RF (2010) Melting above the anhydrous solidus controls the location of volcanic arcs. Nature 467(7316):700–703

    Article  Google Scholar 

  • Foster GL, Pogge von Strandmann PAE, Rae JWB (2010) Boron and magnesium isotopic composition of seawater. Geochem Geophys Geosyst 11:Q08015

    Article  Google Scholar 

  • Foustoukos DI, Savov IP, Janecky DR (2008) Chemical and isotopic constraints on water/rock interactions at the Lost City hydrothermal field, 30 degrees N Mid-Atlantic Ridge. Geochim Cosmochim Acta 72(22):5457–5474

    Article  Google Scholar 

  • Freymuth H, Ivko B, Gill JB, Tamura Y, Elliott T (2016) Thorium isotope evidence for melting of the mafic oceanic crust beneath the Izu arc. Geochim Cosmochim Acta 186:49–70

    Article  Google Scholar 

  • Frisby C, Bizimis M, Mallick S (2016) Hf-Nd isotope decoupling in bulk abyssal peridotites due to serpentinization. Chem Geol 440:60–72

    Google Scholar 

  • Fryer P (2012) Serpentinite mud volcanism: observations, processes, and implications. Annu Rev Mar Sci 4:345–373

    Article  Google Scholar 

  • Gaillou E, Post JE, Rost D, Butler JE (2012) Boron in natural type IIb blue diamonds: chemical and spectroscopic measurements. Am Mineral 97(1):1–18

    Article  Google Scholar 

  • Garth T, Rietbrock A (2014) Order of magnitude increase in subducted H2O due to hydrated normal faults within the Wadati-Benioff zone. Geology 42(3):207–210

    Article  Google Scholar 

  • Gonfiantini R, Tonarini S, Groning M, Adorni-Braccesi A, Al-Ammar AS, Astner M, Bachler S, Barnes RM, Bassett RL, Cocherie A, Deyhle A, Dini A, Ferrara G, Gaillardet J, Grimm J, Guerrot C, Krahenbuhl U, Layne G, Lemarchand D, Meixner A, Northington DJ, Pennisi M, Reitznerova E, Rodushkin I, Sugiura N, Surberg R, Tonn S, Wiedenbeck M, Wunderli S, Xiao YK, Zack T (2003) Intercomparison of boron isotope and concentration measurements. Part II: evaluation of results. Geostandard Newslett 27(1):41–57

    Google Scholar 

  • Grove TL, Till CB, Lev E, Chatterjee N, Medard E (2009) Kinematic variables and water transport control the formation and location of arc volcanoes. Nature 459(7247):694–697

    Article  Google Scholar 

  • Hacker BR (2008) H2O subduction beyond arcs. Geochem Geophys Geosyst 9:Q03001

    Article  Google Scholar 

  • Halama R, Konrad-Schmolke M, Sudo M, Marschall HR, Wiedenbeck M (2014) Effects of fluid–rock interaction on 40Ar/39Ar geochronology in high-pressure rocks (Sesia-Lanzo Zone, Western Alps). Geochim Cosmochim Acta 126:475–494

    Article  Google Scholar 

  • Harlow GE, Flores KE, Marschall HR (2016) Fluid-mediated mass transfer from a paleosubduction channel to its mantle wedge: evidence from jadeitite and related rocks from the Guatemala suture zone. Lithos 258–259:15–36

    Article  Google Scholar 

  • Harvey J, Garrido CJ, Savov I, Agostini S, Padron-Navarta JA, Marchesi C, Sanchez-Vizcaino VL, Gomez-Pugnaire MT (2014a) B-11-rich fluids in subduction zones: the role of antigorite dehydration in subducting slabs and boron isotope heterogeneity in the mantle. Chem Geol 376:20–30

    Article  Google Scholar 

  • Harvey J, Savov IP, Agostini S, Cliff RA, Walshaw R (2014b) Si-metasomatism in serpentinized peridotite: the effects of talc-alteration on strontium and boron isotopes in abyssal serpentinites from Hole 1268a, ODP Leg 209. Geochim Cosmochim Acta 126:30–48

    Article  Google Scholar 

  • Hattori KH, Guillot S (2003) Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge. Geology 31(6):525–528

    Article  Google Scholar 

  • Hermann J, Spandler CJ (2008) Sediment melts at sub-arc depths: an experimental study. J Petrol 49(4):717–740

    Article  Google Scholar 

  • Hervig RL, Moore GM, Williams LB, Peacock SM, Holloway JR, Roggensack K (2002) Isotopic and elemental partitioning of boron between hydrous fluid and silicate melt. Am Mineral 87(5–6):769–774

    Article  Google Scholar 

  • Höfig TW, Geldmacher J, Hoernle K, Hauff F, Duggen S, Garbe-Schonberg D (2014) From the lavas to the gabbros: 1.25 km of geochemical characterization of upper oceanic crust at ODP/IODP site 1256, eastern equatorial Pacific. Lithos 210:289–312

    Article  Google Scholar 

  • Hofmann AW (2014) 3.3 Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry, 2nd edn. pp 67–101

    Google Scholar 

  • Hulett SRW, Simonetti A, Rasbury ET, Hemming NG (2016) Recycling of subducted crustal components into carbonatite melts revealed by boron isotopes. Nature Geosci 9(12):904–908

    Article  Google Scholar 

  • Hupers A, Kasemann SA, Kopf AJ, Meixner A, Toki T, Shinjo R, Wheat CG, You CF (2016) Fluid flow and water-rock interaction across the active Nankai Trough subduction zone forearc revealed by boron isotope geochemistry. Geochim Cosmochim Acta 193:100–118

    Article  Google Scholar 

  • Hyndman RD, McCrory PA, Wech A, Kao H, Ague J (2015) Cascadia subducting plate fluids channelled to fore-arc mantle corner: ETS and silica deposition. J Geophys Res Solid Earth 120(6):4344–4358

    Article  Google Scholar 

  • Ingrin J, Kovacs I, Deloule E, Balan E, Blanchard M, Kohn SC, Hermann J (2014) Identification of hydrogen defects linked to boron substitution in synthetic forsterite and natural oliyine. Am Mineral 99(10):2138–2141

    Article  Google Scholar 

  • Ishikawa T, Nakamura E (1993) Boron isotope systematics of marine sediments. Earth Planet Sci Lett 117(3–4):567–580

    Article  Google Scholar 

  • Ishikawa T, Nakamura E (1994) Origin of the slab component in arc lavas from across-arc variation of B and Pb isotopes. Nature 370(6486):205–208

    Article  Google Scholar 

  • Ishikawa T, Tera F (1997) Source, composition and distribution of the fluid in the Kurile mantle wedge: constraints from across-arc variations of B/Nb and B isotopes. Earth Planet Sci Lett 152(1–4):123–138

    Article  Google Scholar 

  • Ishikawa T, Tera F (1999) Two isotopically distinct fluid components involved in the Mariana arc: evidence from Nb/B ratios and B, Sr, Nd, and Pb isotope systematics. Geology 27(1):83–86

    Article  Google Scholar 

  • Ishikawa T, Tera F, Nakazawa T (2001) Boron isotope and trace element systematics of the three volcanic zones in the Kamchatka arc. Geochim Cosmochim Acta 65(24):4523–4537

    Article  Google Scholar 

  • Johnson MC, Plank T (1999) Dehydration and melting experiments constrain the fate of subducted sediments. Geochem Geophys Geosyst, Artn 1007

    Google Scholar 

  • Jones RE (2014) Subduction zone processes and continental crust formation in the southern Central Andes: insights from geochemistry and geochronology. PhD Thesis. The University of Edinburgh, Edinburgh, School of GeoSciences, 523p

    Google Scholar 

  • Jones RE, De Hoog JCM, Kirstein LA, Kasemann SA, Hinton R, Elliott T, Litvak VD, Eimf (2014) Temporal variations in the influence of the subducting slab on Central Andean arc magmas: evidence from boron isotope systematics. Earth Planet Sci Lett 408:390–401

    Article  Google Scholar 

  • Kawakami T (2001a) Boron depletion controlled by the breakdown of tourmaline in the migmatite zone of the Aoyama area, Ryoke metamorphic belt, southwestern Japan. Can Mineral 39:1529–1546

    Article  Google Scholar 

  • Kawakami T (2001b) Tourmaline breakdown in the migmatite zone of the Ryoke metamorphic belt. SW Japan J Metamorph Geol 19(1):61–75

    Article  Google Scholar 

  • Kendrick MA, Hemond C, Kamenetsky VS, Danyushevsky L, Devey CW, Rodemann T, Jackson MG, Perfit MR (2017) Seawater cycled throughout Earth/’s mantle in partially serpentinized lithosphere. Nature Geosci 10(3):222–228

    Article  Google Scholar 

  • King RL, Bebout GE, Grove M, Moriguti T, Nakamura E (2007) Boron and lead isotope signatures of subduction-zone melange formation: hybridization and fractionation along the slab-mantle interface beneath volcanic arcs. Chem Geol 239(3–4):305–322

    Google Scholar 

  • Kirby SH, Durham WB, Stern LA (1991) Mantle phase-changes and deep-earthquake faulting in subducting lithosphere. Science 252(5003):216–225

    Article  Google Scholar 

  • Kodolanyi J, Pettke T (2011) Loss of trace elements from serpentinites during fluid-assisted transformation of chrysotile to antigorite—an example from Guatemala. Chem Geol 284(3–4):351–362

    Article  Google Scholar 

  • Komabayashi T, Hirose K, Funakoshi K, Takafuji N (2005) Stability of phase A in antigorite (serpentine) composition determined by in situ X-ray pressure observations. Phys Earth Planet Inter 151(3–4):276–289

    Article  Google Scholar 

  • Konrad-Schmolke M, Halama R (2014) Combined thermodynamic-geochemical modeling in metamorphic geology: boron as tracer of fluid-rock interaction. Lithos 208:393–414

    Article  Google Scholar 

  • Konrad-Schmolke M, Zack T, O’Brien PJ, Barth M (2011) Fluid migration above a subducted slab—thermodynamic and trace element modelling of fluid-rock interaction in partially overprinted eclogite-facies rocks (Sesia Zone, Western Alps). Earth Planet Sci Lett 311(3–4):287–298

    Article  Google Scholar 

  • Konrad-Schmolke M, Halama R, Manea VC (2016) Slab mantle dehydrates beneath Kamchatka—yet recycles water into the deep mantle. Geochem Geophys Geosyst 17(8):2987–3007

    Article  Google Scholar 

  • Korenaga J (2017) On the extent of mantle hydration caused by plate bending. Earth Planet Sci Lett 457:1–9

    Article  Google Scholar 

  • Kowalski PM, Wunder B, Jahn S (2013) Ab initio prediction of equilibrium boron isotope fractionation between minerals and aqueous fluids at high P and T. Geochim Cosmochim Acta 101:285–301

    Article  Google Scholar 

  • Lafay R, Deschamps F, Schwartz S, Guillot S, Godard M, Debret B, Nicollet C (2013) High-pressure serpentinites, a trap-and-release system controlled by metamorphic conditions: example from the piedmont zone of the western Alps. Chem Geol 343:38–54

    Article  Google Scholar 

  • Lécuyer C, Grandjean P, Reynard B, Albarède F, Telouk P (2002) 11B/10B analysis of geological materials by ICP–MS Plasma 54: application to the boron fractionation between brachiopod calcite and seawater. Chem Geol 186(1–2):45–55

    Article  Google Scholar 

  • Leeman WP (1996) Boron and other fluid-mobile elements in volcanic arc lavas: implications for subduction processes. In: Subduction Top to Bottom, pp 269–276

    Google Scholar 

  • Leeman WP, Tonarini S, Chan LH, Borg LE (2004) Boron and lithium isotopic variations in a hot subduction zone—the southern Washington cascades. Chem Geol 212(1–2):101–124

    Article  Google Scholar 

  • Leeman WP, Tonarini S, Turner S (2017) Boron isotope variations in Tonga-Kermadec-New Zealand arc lavas: implications for origin of subduction components and mantle influences. Geochem Geophy Geosyst 18:1126–1162. doi:10.1002/2016GC006523

  • MacGregor J, Grew ES, De Hoog JCM, Harley SL, Kowalski PM, Yates MG, Carson CJ (2013) Boron isotopic composition of tourmaline, prismatine, and grandidierite from granulite facies paragneisses in the Larsemann Hills, Prydz Bay, East Antarctica: evidence for a non-marine evaporite source. Geochim Cosmochim Acta 123:261–283

    Article  Google Scholar 

  • Manea VC, Leeman WP, Gerya T, Manea M, Zhu G (2014) Subduction of fracture zones controls mantle melting and geochemical signature above slabs. Nat Commun 5:5095

    Article  Google Scholar 

  • Marschall HR (2017) Boron isotopes in the ocean floor realm and the mantle. In: Marschall HR, Foster GL (eds) Boron Isotopes—The Fifth Element, Advances in Isotope Geochemistry, vol 7, Springer, Heidelberg, 191–217

    Google Scholar 

  • Marschall HR, Schumacher JC (2012) Arc magmas sourced from melange diapirs in subduction zones. Nat Geosci 5(12):862–867

    Article  Google Scholar 

  • Marschall HR, Altherr R, Ludwig T, Kalt A, Gmeling K, Kasztovszky Z (2006a) Partitioning and budget of Li, Be and B in high-pressure metamorphic rocks. Geochim Cosmochim Acta 70(18):4750–4769

    Article  Google Scholar 

  • Marschall HR, Ludwig T, Altherr R, Kalt A, Tonarini S (2006b) Syros metasomatic tourmaline: evidence for very high-delta B-11 fluids in subduction zones. J Petrol 47(10):1915–1942

    Article  Google Scholar 

  • Marschall HR, Altherr R, Rüpke L (2007) Squeezing out the slab—modelling the release of Li, Be and B during progressive high-pressure metamorphism. Chem Geol 239(3–4):323–335

    Article  Google Scholar 

  • Marschall HR, Altherr R, Kalt A, Ludwig T (2008) Detrital, metamorphic and metasomatic tourmaline in high-pressure metasediments from Syros (Greece): intra-grain boron isotope patterns determined by secondary-ion mass spectrometry. Contrib Mineral Petrol 155(6):703–717

    Article  Google Scholar 

  • Marschall HR, Altherr R, Gmeling K, Kasztovszky Z (2009a) Lithium, boron and chlorine as tracers for metasomatism in high-pressure metamorphic rocks: a case study from Syros (Greece). Mineral Petrol 95(3–4):291–302

    Article  Google Scholar 

  • Marschall HR, Korsakov AV, Luvizotto GL, Nasdala L, Ludwig T (2009b) On the occurrence and boron isotopic composition of tourmaline in (ultra)high-pressure metamorphic rocks. J Geol Soc London 166:811–823

    Article  Google Scholar 

  • Marschall HR, Wanless VD, Shimizu N, Pogge von Strandmann PAE, Elliott T, Monteleone B 2017 The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle. Geochim Cosmochim Acta 207:102–138

    Google Scholar 

  • Martin C, Flores KE, Harlow GE (2016) Boron isotopic discrimination for subduction-related serpentinites. Geology 44(11):899–902

    Article  Google Scholar 

  • Moran AE, Sisson VB, Leeman WP (1992) Boron depletion during progressive metamorphism—implications for subduction processes. Earth Planet Sci Lett 111(2–4):331–349

    Article  Google Scholar 

  • Moriguti T, Shibata T, Nakamura E (2004) Lithium, boron and lead isotope and trace element systematics of quaternary basaltic volcanic rocks in northeastern Japan: mineralogical controls on slab-derived fluid composition. Chem Geol 212(1–2):81–100

    Article  Google Scholar 

  • Morris JD, Leeman WP, Tera F (1990) The subducted component in Island-Arc Lavas—constraints from Be isotopes and B-Be systematics. Nature 344(6261):31–36

    Article  Google Scholar 

  • Mottl MJ (1992) Pore waters from serpentinite seamounts in the Mariana and Izu-Bonin forearcs, Leg 125: evidence for volatiles from the subducting slab. In: Fryer P, Pierce J, Stokking LB et al (eds) Proc. ODP, Sci, Results, pp 373–385

    Google Scholar 

  • Mottl MJ, Wheat CG, Fryer P, Gharib J, Martin JB (2004) Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate. Geochim Cosmochim Acta 68(23):4915–4933

    Article  Google Scholar 

  • Nakamura E, Ishikawa T, Birck JL, Allegre CJ (1992) Precise boron isotopic analysis of natural rock samples using a boron mannitol complex. Chem Geol 94(3):193–204

    Article  Google Scholar 

  • Nakano T, Nakamura E (2001) Boron isotope geochemistry of metasedimentary rocks and tourmalines in a subduction zone metamorphic suite. Phys Earth Planet Inter 127(1–4):233–252

    Article  Google Scholar 

  • Noll PD, Newsom HE, Leeman WP, Ryan JG (1996) The role of hydrothermal fluids in the production of subduction zone magmas: evidence from siderophile and chalcophile trace elements and boron. Geochim Cosmochim Acta 60(4):587–611

    Article  Google Scholar 

  • Pabst S, Zack T, Savov IP, Ludwig T, Rost D, Vicenzi EP (2011) Evidence for boron incorporation into the serpentine crystal structure. Am Mineral 96(7):1112–1119

    Article  Google Scholar 

  • Pabst S, Zack T, Savoy IP, Ludwig T, Rost D, Tonarini S, Vicenzi EP (2012) The fate of subducted oceanic slabs in the shallow mantle: insights from boron isotopes and light element composition of metasomatized blueschists from the Mariana forearc. Lithos 132:162–179

    Article  Google Scholar 

  • Padron-Navarta JA, Hermann J, Garrido CJ, Sanchez-Vizcaino VL, Gomez-Pugnaire MT (2010) An experimental investigation of antigorite dehydration in natural silica-enriched serpentinite. Contrib Mineral Petrol 159(1):25–42

    Article  Google Scholar 

  • Padrón-Navarta JA, López Sánchez-Vizcaíno V, Garrido CJ, Gómez-Pugnaire MT (2011) Metamorphic record of high-pressure dehydration of antigorite serpentinite to chlorite harzburgite in a subduction setting (Cerro del Almirez, Nevado-Filábride Complex, Southern Spain). J Petrol 52(10):2047–2078

    Article  Google Scholar 

  • Palmer MR (1991) Boron-isotope systematics of Halmahera Arc (Indonesia) lavas—evidence for involvement of the subducted slab. Geology 19(3):215–217

    Article  Google Scholar 

  • Palmer MR, Spivack AJ, Edmond JM (1987) Temperature and pH controls over isotopic fractionation during adsorption of boron on marine clay. Geochim Cosmochim Acta 51(9):2319–2323

    Article  Google Scholar 

  • Pawley A (2003) Chlorite stability in mantle peridotite: the reaction clinochlore + enstatite = forsterite + pyrope + H2O. Contrib Mineral Petrol 144(4):449–456

    Article  Google Scholar 

  • Peacock SM (1990) Fluid processes in subduction zones. Science 248(4953):329–337

    Article  Google Scholar 

  • Peacock SM (1993) The importance of blueschist-eclogite dehydration reactions in subducting oceanic crust. Geol Soc Am Bull 105(5):684–694

    Article  Google Scholar 

  • Peacock SM (2001) Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology 29(4):299–302

    Article  Google Scholar 

  • Peacock SM, Hervig RL (1999) Boron isotopic composition of subduction-zone metamorphic rocks. Chem Geol 160(4):281–290

    Article  Google Scholar 

  • Penniston-Dorland SC, Kohn MJ, Manning CE (2015) The global range of subduction zone thermal structures from exhumed blueschists and eclogites: rocks are hotter than models. Earth Planet Sci Lett 428:243–254

    Article  Google Scholar 

  • Plank T (2014) 4.17 The chemical composition of subducting sediments. In: Holland H, Turekian KK (eds.) Treatise on Geochemistry, 2nd Edn. pp 607–629

    Google Scholar 

  • Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145(3–4):325–394

    Article  Google Scholar 

  • Poli S, Schmidt MW (2002) Petrology of subducted slabs. Annu Rev Earth Pl Sci 30:207–235

    Article  Google Scholar 

  • Portnyagin M, Manea VC (2008) Mantle temperature control on composition of arc magmas along the Central Kamchatka depression. Geology 36(7):519–522

    Article  Google Scholar 

  • Ranero CR, Morgan JP, McIntosh K, Reichert C (2003) Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425(6956):367–373

    Article  Google Scholar 

  • Reynard B (2013) Serpentine in active subduction zones. Lithos 178:171–185

    Article  Google Scholar 

  • Rose EF, Shimizu N, Layne GD, Grove TL (2001) Melt production beneath Mt. Shasta from boron data in primitive melt inclusions. Science 293(5528):281–283

    Article  Google Scholar 

  • Rosner M, Meixner A (2004) Boron isotopic composition and concentration of ten geological reference materials. Geostand Geoanal Res 28(3):431–441

    Article  Google Scholar 

  • Rosner M, Erzinger J, Franz G, Trumbull RB (2003) Slab-derived boron isotope signatures in arc volcanic rocks from the Central Andes and evidence for boron isotope fractionation during progressive slab dehydration. Geochem Geophy Geosyst Artn 9005

    Google Scholar 

  • Rüpke LH, Morgan JP, Hort M, Connolly JAD (2004) Serpentine and the subduction zone water cycle. Earth Planet Sci Lett 223(1–2):17–34

    Article  Google Scholar 

  • Ryan JG, Langmuir CH (1993) The Systematics of boron abundances in young volcanic-rocks. Geochim Cosmochim Acta 57(7):1489–1498

    Article  Google Scholar 

  • Ryan JG, Morris J, Tera F, Leeman WP, Tsvetkov A (1995) Cross-arc geochemical variations in the kurile arc as a function of slab depth. Science 270(5236):625–627

    Article  Google Scholar 

  • Saffer DM, Kopf AJ (2016) Boron desorption and fractionation in subduction zone fore arcs: implications for the sources and transport of deep fluids. Geochem Geophys Geosyst 17(12):4992–5008

    Article  Google Scholar 

  • Sanchez-Valle C, Reynard B, Daniel I, Lecuyer C, Martinez I, Chervin JC (2005) Boron isotopic fractionation between minerals and fluids: new insights from in situ high pressure-high temperature vibrational spectroscopic data. Geochim Cosmochim Acta 69(17):4301–4313

    Article  Google Scholar 

  • Savov IP, Tonarini S, Ryan J, Mottl MJ (2004) Boron isotope geochemistry of serpentinites and porefluids from Leg 195, Site 1200, S.Chamorro Seamount, Mariana forearc region (abstract). International Geological Congress, Florence, Italy

    Google Scholar 

  • Savov IP, Ryan JG, D’Antonio M, Kelley K, Mattie P (2005) Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: implications for the elemental recycling at subduction zones. Geochem Geophys Geosyst 6 Q04J15

    Google Scholar 

  • Savov IP, Ryan JG, D’Antonio M, Fryer P (2007) Shallow slab fluid release across and along the Mariana arc-basin system: insights from geochemistry of serpentinized peridotites from the Mariana fore arc. J Geophys Res Solid Earth 112(B9):B09205

    Article  Google Scholar 

  • Scambelluri M, Tonarini S (2012) Boron isotope evidence for shallow fluid transfer across subduction zones by serpentinized mantle. Geology 40(10):907–910

    Article  Google Scholar 

  • Scambelluri M, Muntener O, Hermann J, Piccardo GB, Trommsdorff V (1995) Subduction of water into the mantle—history of an Alpine peridotite. Geology 23(5):459–462

    Article  Google Scholar 

  • Scambelluri M, Muntener O, Ottolini L, Pettke TT, Vannucci R (2004) The fate of B, Cl and Li in the subducted oceanic mantle and in the antigorite breakdown fluids. Earth Planet Sci Lett 222(1):217–234

    Article  Google Scholar 

  • Scambelluri M, Pettke T, Cannaò E (2015) Fluid-related inclusions in Alpine high-pressure peridotite reveal trace element recycling during subduction-zone dehydration of serpentinized mantle (Cima di Gagnone, Swiss Alps). Earth Planet Sci Lett 429:45–59

    Article  Google Scholar 

  • Schmidt MW (1996) Experimental constraints on recycling of potassium from subducted oceanic crust. Science 272(5270):1927–1930

    Article  Google Scholar 

  • Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163(1–4):361–379

    Article  Google Scholar 

  • Schmidt MW, Vielzeuf D, Auzanneau E (2004) Melting and dissolution of subducting crust at high pressures: the key role of white mica. Earth Planet Sci Lett 228(1–2):65–84

    Article  Google Scholar 

  • Simon L, Lecuyer C, Marechal C, Coltice N (2006) Modelling the geochemical cycle of boron: implications for the long-term delta B-11 evolution of seawater and oceanic crust. Chem Geol 225(1–2):61–76

    Article  Google Scholar 

  • Skora S, Blundy JD, Brooker RA, Green ECR, De Hoog JCM, Connolly JAD (2015) Hydrous phase relations and trace element partitioning behaviour in calcareous sediments at subduction-zone conditions. J Petrol 56(5):953–980

    Article  Google Scholar 

  • Smith HJ, Spivack AJ, Staudigel H, Hart SR (1995) The boron isotopic composition of altered oceanic crust. Chem Geol 126(2):119–135

    Article  Google Scholar 

  • Smith HJ, Leeman WP, Davidson J, Spivack AJ (1997) The B isotopic composition of arc lavas from Martinique. Lesser Antilles Earth Planet Sci Lett 146(1–2):303–314

    Article  Google Scholar 

  • Snyder GT, Savov IP, Muramatsu Y (2004) Iodine and boron in Mariana serpentine mud volcanoes (ODP 125 and 195): implications for fore-arc processes and subduction recycling. In: Shinohara M, Salisbury MH, Richter C (eds) proc. ODP, Sci. Results, vol 195

    Google Scholar 

  • Spandler C, Pirard C (2013) Element recycling from subducting slabs to arc crust: a review. Lithos 170:208–223

    Article  Google Scholar 

  • Spandler C, Hartmann J, Faure K, Mavrogenes JA, Arculus RJ (2008) The importance of talc and chlorite “hybrid” rocks for volatile recycling through subduction zones; evidence from the high-pressure subduction melange of New Caledonia. Contrib Mineral Petrol 155(2):181–198

    Article  Google Scholar 

  • Spivack AJ, Edmond JM (1987) Boron isotope exchange between seawater and the oceanic crust. Geochim Cosmochim Acta 51(5):1033–1043

    Article  Google Scholar 

  • Spivack AJ, Palmer MR, Edmond JM (1987) The sedimentary cycle of the boron isotopes. Geochim Cosmochim Acta 51(7):1939–1949

    Article  Google Scholar 

  • Straub SM, Layne GD (2002) The systematics of boron isotopes in Izu arc front volcanic rocks. Earth Planet Sci Lett 198(1–2):25–39

    Article  Google Scholar 

  • Straub SM, Layne GD (2003) Decoupling of fluids and fluid-mobile elements during shallow subduction: evidence from halogen-rich andesite melt inclusions from the Izu arc volcanic front. Geochem Geophys Geosyst 4 Artn 9003

    Google Scholar 

  • Syracuse EM, Abers GA (2006) Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochem Geophys Geosyst Artn Q05017

    Google Scholar 

  • Syracuse EM, van Keken PE, Abers GA (2010) The global range of subduction zone thermal models. Phys Earth Planet In 183(1–2):73–90

    Article  Google Scholar 

  • Tatsumi Y (1989) Migration of fluid phases and genesis of basalt magmas in subduction zones. J Geophys Res-Solid 94(B4):4697–4707

    Article  Google Scholar 

  • Tenthorey E, Hermann J (2004) Composition of fluids during serpentinite breakdown in subduction zones: evidence for limited boron mobility. Geology 32(10):865–868

    Article  Google Scholar 

  • Tera F, Brown L, Morris J, Sacks IS, Klein J, Middleton R (1986) Sediment incorporation in island-arc magmas—inferences from Be-10. Geochim Cosmochim Acta 50(4):535–550

    Article  Google Scholar 

  • Till CB, Grove TL, Withers AC (2012) The beginnings of hydrous mantle wedge melting. Contrib Mineral Petrol 163(4):669–688

    Article  Google Scholar 

  • Toki T, Higa K, Shinjo R (2015) Data report: boron isotope ratios in interstitial waters from sites C0021 and C0022. In: Strasser M, Dugan B, Kanagawa K, Moore GF, Toczko S, Maeda L, and the Expedition 338 Scientists (eds.) Proceedings of the integrated ocean drilling program. Integrated Ocean Drilling Program, Yokohama, vol 338

    Google Scholar 

  • Tonarini S, Pennisi M, Leeman WP (1997) Precise boron isotopic analysis of complex silicate (rock) samples using alkali carbonate fusion and ion-exchange separation. Chem Geol 142(1–2):129–137

    Article  Google Scholar 

  • Tonarini S, Leeman WP, Ferrara G (2001) Boron isotopic variations in lavas of the Aeolian volcanic arc, South Italy. J Volcanol Geothermal Res 110(1–2):155–170

    Article  Google Scholar 

  • Tonarini S, Agostini S, Doglioni C, Innocenti F, Manetti P (2007) Evidence for serpentinite fluid in convergent margin systems: the example of El Salvador (Central America) arc lavas. Geochem Geophys Geosyst 8:Q09014

    Article  Google Scholar 

  • Tonarini S, Leeman WP, Leat PT (2011) Subduction erosion of forearc mantle wedge implicated in the genesis of the South Sandwich Island (SSI) arc: evidence from boron isotope systematics. Earth Planet Sci Lett 301(1–2):275–284

    Article  Google Scholar 

  • Trommsdorff V, Sanchez-Vizcaino VL, Gomez-Pugnaire MT, Muntener O (1998) High pressure breakdown of antigorite to spinifex-textured olivine and orthopyroxene SE Spain. Contrib Mineral Petrol 132(2):139–148

    Article  Google Scholar 

  • Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science 268(5212):858–861

    Article  Google Scholar 

  • Van Hinsberg VJ, Henry DJ, Marschall HR (2011) Tourmaline: an ideal indicator of its host environment. Can Mineral 49(1):1–16

    Article  Google Scholar 

  • Van Keken PE, Kiefer B, Peacock SM (2002) High-resolution models of subduction zones: implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochem Geophys Geosystems 3 Artn 1056

    Google Scholar 

  • Van Keken PE, Hacker BR, Syracuse EM, Abers GA (2011) Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J Geophys Res Solid Earth 116 Artn B01401

    Google Scholar 

  • Vannucchi P, Sage F, Phipps Morgan J, Remitti F, Collot J-Y (2012) Toward a dynamic concept of the subduction channel at erosive convergent margins with implications for interplate material transfer. Geochem Geophys Geosyst 13(2):Q02003

    Article  Google Scholar 

  • Vils F, Tonarini S, Kalt A, Seitz HM (2009) Boron, lithium and strontium isotopes as tracers of seawater-serpentinite interaction at Mid-Atlantic ridge, ODP Leg 209. Earth Planet. Sci. Lett. 286(3–4):414–425

    Article  Google Scholar 

  • Vils F, Muntener O, Kalt A, Ludwig T (2011) Implications of the serpentine phase transition on the behaviour of beryllium and lithium-boron of subducted ultramafic rocks. Geochim Cosmochim Acta 75(5):1249–1271

    Article  Google Scholar 

  • Wada I, Behn MD, Shaw AM (2012) Effects of heterogeneous hydration in the incoming plate, slab rehydration, and mantle wedge hydration on slab-derived H2O flux in subduction zones. Earth Planet Sci Lett. 353:60–71

    Article  Google Scholar 

  • Walowski KJ, Wallace PJ, Hauri EH, Wada I, Clynne MA (2015) Slab melting beneath the Cascade Arc driven by dehydration of altered oceanic peridotite. Nat Geosci 8(5):404–408

    Article  Google Scholar 

  • Wunder B, Meixner A, Romer RL, Wirth R, Heinrich W (2005) The geochernical cycle of boron: constraints from boron isotope partitioning experiments between mica and fluid. Lithos 84(3–4):206–216

    Article  Google Scholar 

  • Yamaoka K, Ishikawa T, Matsubaya O, Ishiyama D, Nagaishi K, Hiroyasu Y, Chiba H, Kawahata H (2012) Boron and oxygen isotope systematics for a complete section of oceanic crustal rocks in the Oman ophiolite. Geochim Cosmochim Acta 84:543–559

    Article  Google Scholar 

  • Yamaoka K, Matsukura S, Ishikawa T, Kawahata H (2015) Boron isotope systematics of a fossil hydrothermal system from the Troodos ophiolite, Cyprus: water-rock interactions in the oceanic crust and subseafloor ore deposits. Chem Geol 396:61–73

    Article  Google Scholar 

  • You CF, Chan LH, Spivack AJ, Gieskes JM (1995) Lithium, boron, and their isotopes in sediments and pore waters of Ocean drilling program site-808, Nankai trough—implications for fluid expulsion in accretionary prisms. Geology 23(1):37–40

    Article  Google Scholar 

  • You CF, Spivack AJ, Gieskes JM, Martin JB, Davisson ML (1996) Boron contents and isotopic compositions in pore waters: a new approach to determine temperature induced artifacts—geochemical implications. Mar Geol 129(3–4):351–361

    Article  Google Scholar 

Download references

Acknowledgements

We thank the editors for their patience and persistence. Bill Leeman and Ralf Halama are thanked for their thoughtful reviews and comments. Stephen Turner and Ralf Halama contributed to the development of the volcanic arc B and B isotope and trace element database. IPS would like to thank DTM-Carnegie and particularly Fouad Tera for inspirational and career-influencing discussions on light element geochemistry. IPS was introduced to the world of B and B isotopes by Jeff Ryan and Sonia Tonarini, who are thanked for their support and mentoring over the years. IPS and CJH are grateful to Samuele Agostini and the staff of IGG at CNR-Pisa for their continuous support with often difficult B isotope measurements and unselfish advice, and for always being open to the ever growing B isotope science community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan C. M. De Hoog .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Hoog, J.C.M., Savov, I.P. (2018). Boron Isotopes as a Tracer of Subduction Zone Processes. In: Marschall, H., Foster, G. (eds) Boron Isotopes. Advances in Isotope Geochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-64666-4_9

Download citation

Publish with us

Policies and ethics