Skip to main content

Aging, Immunosenescence, and Transplantation Tolerance

  • Living reference work entry
  • First Online:
Handbook of Immunosenescence

Abstract

The immune system response to organ transplantation is a complex interplay of effector functions and regulatory controls. Just as aging dramatically impacts the body’s response to pathogens, the immunological impact of aging on the success or failure of organ transplantation is multilayered and defined by how the immune system loses its effector functions and regulation. Among these, the most important, and best understood, are the changes to T cell functioning and how anergy, replicative senescence, and immune exhaustion decrease the allo-response to transplanted organs. The decreased effector functions of T cells can allow for the development of organ tolerance and allow for the decreased reliance on immunosuppressive medications.

Additionally, the impact of aging is broader than the immunosenescent impact on T cells. Changes to the innate immune system, antigen presentation, memory responses, B cells, and regulatory cells can all impact the body’s response to organ transplantation. These changes impact decisions regarding immunosuppression medications in the elderly, whether tolerance induction is a potential therapy, and even how organs are allocated for elderly patients.

Ultimately, by carefully understanding immunosenescence and the changes that the immune system undergoes during aging, the field of transplant immunology can greatly enhance how it addresses the needs of an aging transplantation patient population. Furthermore, an exciting area of research centers on how the understanding of immunosenescence can guide future research to develop novel treatments – more effective immunosuppression, induced allograft tolerance, and xenotransplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abe M, Wang Z, de Creus A, Thomson AW (2005) Plasmacytoid dendritic cell precursors induce allogeneic T-cell hyporesponsiveness and prolong heart graft survival. Am J Transplant 5:1808–1819

    Article  CAS  Google Scholar 

  • Adachi K, Tamada K (2015) Immune checkpoint blockade opens an avenue of cancer immunotherapy with a potent clinical efficacy. Cancer Sci 106:945–950

    Article  CAS  Google Scholar 

  • Adams AB, Ford ML, Larsen CP (2016) Costimulation blockade in autoimmunity and transplantation: the CD28 pathway. J Immunol 197:2045–2050

    Article  CAS  Google Scholar 

  • Agrawal A, Agrawal S, Tay J, Gupta S (2008) Biology of dendritic cells in aging. J Clin Immunol 28:14–20

    Article  Google Scholar 

  • Akbar AN, Henson SM (2011) Are senescence and exhaustion intertwined or unrelated processes that compromise immunity? Nat Rev Immunol 11:289–295

    Article  CAS  Google Scholar 

  • Appleman LJ, Boussiotis VA (2003) T cell anergy and costimulation. Immunol Rev 192:161–180

    Article  CAS  Google Scholar 

  • Benichou G, Tonsho M, Tocco G, Nadazdin O, Madsen JC (2012) Innate immunity and resistance to tolerogenesis in allotransplantation. Front Immunol 3:73

    Article  CAS  Google Scholar 

  • Benitez C, Londono MC, Miquel R, Manzia TM, Abraldes JG, Lozano JJ, Martinez-Llordella M, Lopez M, Angelico R, Bohne F et al (2013) Prospective multicenter clinical trial of immunosuppressive drug withdrawal in stable adult liver transplant recipients. Hepatology 58:1824–1835

    Article  CAS  Google Scholar 

  • Billingham RE, Brent L, Medawar PB (1953) Actively acquired tolerance of foreign cells. Nature 172:603–606

    Article  CAS  Google Scholar 

  • Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP (1999) Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17:189–220

    Article  CAS  Google Scholar 

  • Bohne F, Londono MC, Benitez C, Miquel R, Martinez-Llordella M, Russo C, Ortiz C, Bonaccorsi-Riani E, Brander C, Bauer T et al (2014) HCV-induced immune responses influence the development of operational tolerance after liver transplantation in humans. Sci Transl Med 6:242–281

    Article  Google Scholar 

  • Borrego F, Alonso MC, Galiani MD, Carracedo J, Ramirez R, Ostos B, Pena J, Solana R (1999) NK phenotypic markers and IL2 response in NK cells from elderly people. Exp Gerontol 34:253–265

    Article  CAS  Google Scholar 

  • Bradley BA (2000) Does the risk of acute rejection really decrease with increasing recipient age? Transpl Int 13(Suppl 1):S42–S44

    Article  Google Scholar 

  • Bradley BA (2002) Rejection and recipient age. Transpl Immunol 10:125–132

    Article  CAS  Google Scholar 

  • Brent L (2015) Transplantation tolerance – a historical introduction. Immunology 147:267–268

    Article  Google Scholar 

  • Castle SC (2000) Clinical relevance of age-related immune dysfunction. Clin Infect Dis 31:578–585

    Article  CAS  Google Scholar 

  • Chandran S, Tang Q, Sarwal M, Laszik ZG, Putnam AL, Lee K, Leung J, Nguyen V, Sigdel T, Tavares EC et al (2017) Polyclonal regulatory T cell therapy for control of inflammation in kidney transplants. Am J Transplant 17:2945–2954

    Article  CAS  Google Scholar 

  • Chang K, Svabek C, Vazquez-Guillamet C, Sato B, Rasche D, Wilson S, Robbins P, Ulbrandt N, Suzich J, Green J et al (2015) Targeting the programmed cell death 1: programmed cell death ligand 1 pathway reverses T cell exhaustion in patients with sepsis. Crit Care 18:R3

    Article  Google Scholar 

  • Cossarizza A, Ortolani C, Monti D, Franceschi C (1997) Cytometric analysis of immunosenescence. Cytometry 27:297–313

    Article  CAS  Google Scholar 

  • Crawford A, Angelosanto JM, Kao C, Doering TA, Odorizzi PM, Barnett BE, Wherry EJ (2014) Molecular and transcriptional basis of CD4(+) T cell dysfunction during chronic infection. Immunity 40:289–302

    Article  CAS  Google Scholar 

  • Dejaco C, Duftner C, Schirmer M (2006) Are regulatory T-cells linked with aging? Exp Gerontol 41:339–345

    Article  CAS  Google Scholar 

  • Della Bella S, Bierti L, Presicce P, Arienti R, Valenti M, Saresella M, Vergani C, Villa ML (2007) Peripheral blood dendritic cells and monocytes are differently regulated in the elderly. Clin Immunol 122:220–228

    Article  CAS  Google Scholar 

  • Deng S, Moore DJ, Huang X, Lian MM, Mohiuddin M, Velededeoglu E, Lee MKt, Sonawane S, Kim J, Wang J et al (2007) Cutting edge: transplant tolerance induced by anti-CD45RB requires B lymphocytes. J Immunol 178:6028–6032

    Article  CAS  Google Scholar 

  • Dietze KK, Zelinskyy G, Liu J, Kretzmer F, Schimmer S, Dittmer U (2013) Combining regulatory T cell depletion and inhibitory receptor blockade improves reactivation of exhausted virus-specific CD8+ T cells and efficiently reduces chronic retroviral loads. PLoS Pathog 9:e1003798

    Article  Google Scholar 

  • Doering TA, Crawford A, Angelosanto JM, Paley MA, Ziegler CG, Wherry EJ (2012) Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus memory. Immunity 37:1130–1144

    Article  CAS  Google Scholar 

  • Effros RB (2000) Costimulatory mechanisms in the elderly. Vaccine 18:1661–1665

    Article  CAS  Google Scholar 

  • Fox A, Harrison LC (2000) Innate immunity and graft rejection. Immunol Rev 173:141–147

    Article  CAS  Google Scholar 

  • Gallimore A, Glithero A, Godkin A, Tissot AC, Pluckthun A, Elliott T, Hengartner H, Zinkernagel R (1998) Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J Exp Med 187:1383–1393

    Article  CAS  Google Scholar 

  • Garrod KR, Liu FC, Forrest LE, Parker I, Kang SM, Cahalan MD (2010) NK cell patrolling and elimination of donor-derived dendritic cells favor indirect alloreactivity. J Immunol 184:2329–2336

    Article  CAS  Google Scholar 

  • Gavazzi G, Krause KH (2002) Ageing and infection. Lancet Infect Dis 2:659–666

    Article  Google Scholar 

  • George AJ, Ritter MA (1996) Thymic involution with ageing: obsolescence or good housekeeping? Immunol Today 17:267–272

    Article  CAS  Google Scholar 

  • Gibson KL, Wu YC, Barnett Y, Duggan O, Vaughan R, Kondeatis E, Nilsson BO, Wikby A, Kipling D, Dunn-Walters DK (2009) B-cell diversity decreases in old age and is correlated with poor health status. Aging Cell 8:18–25

    Article  CAS  Google Scholar 

  • Gill Z, Nieuwoudt M, Ndifon W (2018) The Hayflick limit and age-related adaptive immune deficiency. Gerontology 64(2):135–139

    Article  CAS  Google Scholar 

  • Gjertson DW (1996) A multi-factor analysis of kidney graft outcomes at one and five years posttransplantation: 1996 UNOS update. In: Cecka JM, Terasaki PI (eds) Clinical Transplants 1996, 12th edn. UCLA Tissue Typing Laboratory, Los Angeles, pp 343–360

    Google Scholar 

  • Globerson A, Effros RB (2000) Ageing of lymphocytes and lymphocytes in the aged. Immunol Today 21:515–521

    Article  CAS  Google Scholar 

  • Gonzalez-Quintial R, Theofilopoulos AN (1992) V beta gene repertoires in aging mice. J Immunol 149:230–236

    CAS  PubMed  Google Scholar 

  • Halloran PF, Chang J, Famulski K, Hidalgo LG, Salazar ID, Merino Lopez M, Matas A, Picton M, de Freitas D, Bromberg J et al (2015) Disappearance of T cell-mediated rejection despite continued antibody-mediated rejection in late kidney transplant recipients. J Am Soc Nephrol 26:1711–1720

    Article  CAS  Google Scholar 

  • Harding FA, McArthur JG, Gross JA, Raulet DH, Allison JP (1992) CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 356:607–609

    Article  CAS  Google Scholar 

  • Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636

    Article  CAS  Google Scholar 

  • Hoffmann J, Haendeler J, Aicher A, Rossig L, Vasa M, Zeiher AM, Dimmeler S (2001) Aging enhances the sensitivity of endothelial cells toward apoptotic stimuli: important role of nitric oxide. Circ Res 89:709–715

    Article  CAS  Google Scholar 

  • Huang X, Sonawane S, Kim J, Lian M, Lee K, Caton A, Deng S, Markmann JF (2006) Age-dependent transplantion tolerance. Abstract 2513 WTC. Am J Transplant 6:890

    Google Scholar 

  • Ibrahim S, Dawson DV, Sanfilippo F (1995) Predominant infiltration of rejecting human renal allografts with T cells expressing CD8 and CD45RO. Transplantation 59:724–728

    Article  CAS  Google Scholar 

  • Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A 99:12293–12297

    Article  CAS  Google Scholar 

  • Jenkins MK, Schwartz RH (1987) Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J Exp Med 165:302–319

    Article  CAS  Google Scholar 

  • Karre K, Ljunggren HG, Piontek G, Kiessling R (1986) Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319:675–678

    Article  CAS  Google Scholar 

  • Kawai T, Cosimi AB (2010) Induction of tolerance in clinical kidney transplantation. Clin Transpl 24(Suppl 22):2–5

    Article  Google Scholar 

  • Kawai K, Uchiyama M, Hester J, Wood K, Issa F (2017) Regulatory T cells for tolerance. Hum Immunol. https://doi.org/10.1016/j.humimm.2017.12.013

  • Kirk AD, Guasch A, Xu H, Cheeseman J, Mead SI, Ghali A, Mehta AK, Wu D, Gebel H, Bray R et al (2014) Renal transplantation using belatacept without maintenance steroids or calcineurin inhibitors. Am J Transplant 14:1142–1151

    Article  CAS  Google Scholar 

  • Krenzien F, ElKhal A, Quante M, Rodriguez Cetina Biefer H, Hirofumi U, Gabardi S, Tullius SG (2015) A rationale for age-adapted immunosuppression in organ transplantation. Transplantation 99:2258–2268

    Article  CAS  Google Scholar 

  • Lakkis FG, Sayegh MH (2003) Memory T cells: a hurdle to immunologic tolerance. J Am Soc Nephrol 14:2402–2410

    Article  Google Scholar 

  • Leichtman AB, McCullough KP, Wolfe RA (2011) Improving the allocation system for deceased-donor kidneys. N Engl J Med 364:1287–1289

    Article  CAS  Google Scholar 

  • Liu YJ (2005) IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23:275–306

    Article  CAS  Google Scholar 

  • Macian F, Garcia-Cozar F, Im SH, Horton HF, Byrne MC, Rao A (2002) Transcriptional mechanisms underlying lymphocyte tolerance. Cell 109:719–731

    Article  CAS  Google Scholar 

  • Martins PN, Reutzel-Selke A, Pratschke J, Jurisch A, Pascher A, Neuhaus P, Volk H, Tullius SG (2006) Donor and recipient age prevent tolerance induction. Abstract 2530 WTC. Am J Transplant 6:895

    Google Scholar 

  • Martins PN, Tullius SG, Markmann JF (2014) Immunosenescence and immune response in organ transplantation. Int Rev Immunol 33:162–173

    Article  CAS  Google Scholar 

  • McMahan RH, Golden-Mason L, Nishimura MI, McMahon BJ, Kemper M, Allen TM, Gretch DR, Rosen HR (2010) Tim-3 expression on PD-1+ HCV-specific human CTLs is associated with viral persistence, and its blockade restores hepatocyte-directed in vitro cytotoxicity. J Clin Invest 120:4546–4557

    Article  CAS  Google Scholar 

  • Meier-Kriesche HU, Ojo AO, Cibrik DM, Hanson JA, Leichtman AB, Magee JC, Port FK, Kaplan B (2000) Relationship of recipient age and development of chronic allograft failure. Transplantation 70:306–310

    Article  CAS  Google Scholar 

  • Mo R, Chen J, Han Y, Bueno-Cannizares C, Misek DE, Lescure PA, Hanash S, Yung RL (2003) T cell chemokine receptor expression in aging. J Immunol 170:895–904

    Article  CAS  Google Scholar 

  • Moskophidis D, Lechner F, Pircher H, Zinkernagel RM (1993) Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature 362:758–761

    Article  CAS  Google Scholar 

  • Murphy SP, Porrett PM, Turka LA (2011) Innate immunity in transplant tolerance and rejection. Immunol Rev 241:39–48

    Article  CAS  Google Scholar 

  • Ochando JC, Homma C, Yang Y, Hidalgo A, Garin A, Tacke F, Angeli V, Li Y, Boros P, Ding Y et al (2006) Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nat Immunol 7:652–662

    Article  CAS  Google Scholar 

  • Odorizzi PM, Pauken KE, Paley MA, Sharpe A, Wherry EJ (2015) Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. J Exp Med 212:1125–1137

    Article  CAS  Google Scholar 

  • OPTN/SRTR (2018) OPTN/SRTR 2016 annual data report: introduction. Am J Transplant 18(Suppl 1):10–17

    Google Scholar 

  • Oura T, Cosimi AB, Kawai T (2017) Chimerism-based tolerance in organ transplantation: preclinical and clinical studies. Clin Exp Immunol 189:190–196

    Article  CAS  Google Scholar 

  • Pauken KE, Wherry EJ (2015) Overcoming T cell exhaustion in infection and cancer. Trends Immunol 36:265–276

    Article  CAS  Google Scholar 

  • Pawelec G (1999) Immunosenescence: impact in the young as well as the old? Mech Ageing Dev 108:1–7

    Article  CAS  Google Scholar 

  • Pellegrini M, Calzascia T, Toe JG, Preston SP, Lin AE, Elford AR, Shahinian A, Lang PA, Lang KS, Morre M et al (2011) IL-7 engages multiple mechanisms to overcome chronic viral infection and limit organ pathology. Cell 144:601–613

    Article  CAS  Google Scholar 

  • Penaloza-MacMaster P, Kamphorst AO, Wieland A, Araki K, Iyer SS, West EE, O'Mara L, Yang S, Konieczny BT, Sharpe AH et al (2014) Interplay between regulatory T cells and PD-1 in modulating T cell exhaustion and viral control during chronic LCMV infection. J Exp Med 211:1905–1918

    Article  CAS  Google Scholar 

  • Powell JD, Ragheb JA, Kitagawa-Sakakida S, Schwartz RH (1998) Molecular regulation of interleukin-2 expression by CD28 co-stimulation and anergy. Immunol Rev 165:287–300

    Article  CAS  Google Scholar 

  • Qian S, Lu L, Fu F, Li Y, Li W, Starzl TE, Fung JJ, Thomson AW (1997) Apoptosis within spontaneously accepted mouse liver allografts: evidence for deletion of cytotoxic T cells and implications for tolerance induction. J Immunol 158:4654–4661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers NJ, Lechler RI (2001) Allorecognition. Am J Transplant 1:97–102

    Article  CAS  Google Scholar 

  • Rostaing L, Vincenti F, Grinyo J, Rice KM, Bresnahan B, Steinberg S, Gang S, Gaite LE, Moal MC, Mondragon-Ramirez GA et al (2013) Long-term belatacept exposure maintains efficacy and safety at 5 years: results from the long-term extension of the BENEFIT study. Am J Transplant 13:2875–2883

    Article  CAS  Google Scholar 

  • Roy S, Barnes PF, Garg A, Wu S, Cosman D, Vankayalapati R (2008) NK cells lyse T regulatory cells that expand in response to an intracellular pathogen. J Immunol 180:1729–1736

    Article  CAS  Google Scholar 

  • Sanchez-Fueyo A, Markmann JF (2016) Immune exhaustion and transplantation. Am J Transplant 16:1953–1957

    Article  CAS  Google Scholar 

  • Sarraj B, Ye J, Akl AI, Chen G, Wang JJ, Zhang Z, Abadja F, Abecassis M, Miller SD, Kansas GS et al (2014) Impaired selectin-dependent leukocyte recruitment induces T-cell exhaustion and prevents chronic allograft vasculopathy and rejection. Proc Natl Acad Sci USA 111:12145–12150

    Article  CAS  Google Scholar 

  • Schietinger A, Greenberg PD (2014) Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol 35:51–60

    Article  CAS  Google Scholar 

  • Sharpe AH, Freeman GJ (2002) The B7-CD28 superfamily. Nat Rev Immunol 2:116–126

    Article  CAS  Google Scholar 

  • Shortman K, Liu YJ (2002) Mouse and human dendritic cell subtypes. Nat Rev Immunol 2:151–161

    Article  CAS  Google Scholar 

  • Smits JM, Persijn GG, van Houwelingen HC, Claas FH, Frei U (2002) Evaluation of the eurotransplant senior program. The results of the first year. Am J Transplant 2:664–670

    Article  Google Scholar 

  • Steger U, Denecke C, Sawitzki B, Karim M, Jones ND, Wood KJ (2008) Exhaustive differentiation of alloreactive CD8+ T cells: critical for determination of graft acceptance or rejection. Transplantation 85:1339–1347

    Article  Google Scholar 

  • Sun J, Sheil AG, Wang C, Wang L, Rokahr K, Sharland A, Jung SE, Li L, McCaughan GW, Bishop GA (1996) Tolerance to rat liver allografts: IV. Acceptance depends on the quantity of donor tissue and on donor leukocytes. Transplantation 62:1725–1730

    Article  CAS  Google Scholar 

  • Szot GL, Zhou P, Rulifson I, Wang J, Guo Z, Kim O, Newel KA, Thistlethwaite JR, Bluestone JA, Alegre ML (2001) Different mechanisms of cardiac allograft rejection in wildtype and CD28-deficient mice. Am J Transplant 1:38–46

    Article  CAS  Google Scholar 

  • Terasaki PI, Gjertson DW, Cecka JM, Takemoto S, Cho YW (1997) Significance of the donor age effect on kidney transplants. Clin Transpl 11:366–372

    CAS  Google Scholar 

  • Todo S, Yamashita K, Goto R, Zaitsu M, Nagatsu A, Oura T, Watanabe M, Aoyagi T, Suzuki T, Shimamura T et al (2016) A pilot study of operational tolerance with a regulatory T-cell-based cell therapy in living donor liver transplantation. Hepatology 64:632–643

    Article  CAS  Google Scholar 

  • Trzonkowski P, Szmit E, Mysliwska J, Mysliwski A (2006) CD4+CD25+ T regulatory cells inhibit cytotoxic activity of CTL and NK cells in humans-impact of immunosenescence. Clin Immunol 119:307–316

    Article  CAS  Google Scholar 

  • Trzonkowski P, Debska-Slizien A, Jankowska M, Wardowska A, Carvalho-Gaspar M, Hak L, Moszkowska G, Bzoma B, Mills N, Wood KJ et al (2010) Immunosenescence increases the rate of acceptance of kidney allotransplants in elderly recipients through exhaustion of CD4+ T-cells. Mech Ageing Dev 131:96–104

    Article  CAS  Google Scholar 

  • Tsaknaridis L, Spencer L, Culbertson N, Hicks K, LaTocha D, Chou YK, Whitham RH, Bakke A, Jones RE, Offner H et al (2003) Functional assay for human CD4+CD25+ Treg cells reveals an age-dependent loss of suppressive activity. J Neurosci Res 74:296–308

    Article  CAS  Google Scholar 

  • Tullius SG, Tran H, Guleria I, Malek SK, Tilney NL, Milford E (2010) The combination of donor and recipient age is critical in determining host immunoresponsiveness and renal transplant outcome. Ann Surg 252:662–674

    PubMed  Google Scholar 

  • Uyemura K, Castle SC, Makinodan T (2002) The frail elderly: role of dendritic cells in the susceptibility of infection. Mech Ageing Dev 123:955–962

    Article  CAS  Google Scholar 

  • Varas A, Sacedon R, Hernandez-Lopez C, Jimenez E, Garcia-Ceca J, Arias-Diaz J, Zapata AG, Vicente A (2003) Age-dependent changes in thymic macrophages and dendritic cells. Microsc Res Tech 62:501–507

    Article  CAS  Google Scholar 

  • Vincenti F, Larsen C, Durrbach A, Wekerle T, Nashan B, Blancho G, Lang P, Grinyo J, Halloran PF, Solez K et al (2005) Costimulation blockade with belatacept in renal transplantation. N Engl J Med 353:770–781

    Article  CAS  Google Scholar 

  • Vincenti F, Rostaing L, Grinyo J, Rice K, Steinberg S, Gaite L, Moal MC, Mondragon-Ramirez GA, Kothari J, Polinsky MS et al (2016) Belatacept and long-term outcomes in kidney transplantation. N Engl J Med 374:333–343

    Article  CAS  Google Scholar 

  • Wherry EJ (2011) T cell exhaustion. Nat Immunol 12:492–499

    Article  CAS  Google Scholar 

  • Wherry EJ, Kurachi M (2015) Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 15:486–499

    Article  CAS  Google Scholar 

  • Wherry EJ, Blattman JN, Murali-Krishna K, van der Most R, Ahmed R (2003) Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J Virol 77:4911–4927

    Article  CAS  Google Scholar 

  • Wilson EB, Yamada DH, Elsaesser H, Herskovitz J, Deng J, Cheng G, Aronow BJ, Karp CL, Brooks DG (2013) Blockade of chronic type I interferon signaling to control persistent LCMV infection. Science 340:202–207

    Article  CAS  Google Scholar 

  • Yamada K, Gianello PR, Ierino FL, Fishbein J, Lorf T, Shimizu A, Colvin RB, Sachs DH (1999) Role of the thymus in transplantation tolerance in miniature swine: II. Effect of steroids and age on the induction of tolerance to class I mismatched renal allografts. Transplantation 67:458–467

    Article  CAS  Google Scholar 

  • Yu G, Xu X, Vu MD, Kilpatrick ED, Li XC (2006) NK cells promote transplant tolerance by killing donor antigen-presenting cells. J Exp Med 203:1851–1858

    Article  CAS  Google Scholar 

  • Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, Altman JD, Ahmed R (1998) Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med 188:2205–2213

    Article  CAS  Google Scholar 

  • Zinkernagel RM (1996) Immunology taught by viruses. Science 271:173–178

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. Markmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rickert, C.G., Markmann, J.F. (2018). Aging, Immunosenescence, and Transplantation Tolerance. In: Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G. (eds) Handbook of Immunosenescence. Springer, Cham. https://doi.org/10.1007/978-3-319-64597-1_138-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64597-1_138-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64597-1

  • Online ISBN: 978-3-319-64597-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics