Skip to main content

Aging and the Biological Clock

  • Chapter
  • First Online:
Circadian Rhythms and Their Impact on Aging

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 7))

Abstract

Aging and the biological clock are linked via metabolism. We explore how different pathways within metabolism link aging and the clock. These linking pathways include those involving: (1) sphingolipid metabolism; (2) the sir2 complex of genes affecting caloric restriction ; (3) pathways underlying oxidative stress ; (4) the cell cycle ; and (5) glucose metabolism . Making these metabolic linkages in Neurospora crassa is facilitated by the availability of an entire transcriptional network for the clock. Emerging themes include epistatic interactions between genes leading to effects on the clock and aging . We also present evidence that these five metabolic linkages affecting aging provide feedback to the clock. Metabolism is not only driven by the clock, but metabolism is likely to provide feedback to the clock by a variety of metabolic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Omari A et al (2015) Discovering regulatory network topologies using ensemble methods on GPGPUs with special reference to the biological clock of Neurospora crassa. IEEE Access 3:27–42

    Article  Google Scholar 

  • Anisimov VN et al (2004) Effect of exposure to light-at-night on life span and spontaneous carcinogenesis in female CBA mice. Int J Cancer 111:475–479

    Article  CAS  PubMed  Google Scholar 

  • Arnold J et al (2010) Predicting successful aging in a population-based sample of Georgia centenarians. Curr Gerontol Geriatr Res. doi:10.1155/2010/989315

  • Asher G et al (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317–328

    Article  CAS  PubMed  Google Scholar 

  • Barbieri M, Bonafè M, Franceschi C, Paolisso G (2003) Insulin/IGF-I-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans. Am J Physiol Endocrinol Metab 285:E1064–E1071

    Article  CAS  PubMed  Google Scholar 

  • Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science 330:1349–1354

    Google Scholar 

  • Beadle GW, Tatum EL (1941) Genetic control of biochemical reactions in Neurospora. Proc Natl Acad Sci USA 27:499–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belancio VP, Blask DE, Deininger P, Hill SM, Jazwinski SM (2015) The aging clock and circadian control of metabolism and genome stability. Front Genet 5:455

    Article  PubMed  PubMed Central  Google Scholar 

  • Belden WJ et al (2007a) The band mutation in Neurospora crassa is a dominant allele of ras-1 implicating RAS signaling in circadian output. Genes Dev 21:1494–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belden WJ, Loros JJ, Dunlap JC (2007b) Execution of the circadian negative feedback loop in Neurospora requires the ATP-dependent chromatin-remodeling enzyme CLOCKSWITCH. Mol Cell 25:587–600

    Article  CAS  PubMed  Google Scholar 

  • Belle MD, Diekman CO, Forger DB, Piggins HD (2009) Daily electrical silencing in the mammalian circadian clock. Science 326:281–284

    Google Scholar 

  • Bennett LD, Beremand P, Thomas TL, Bell-Pedersen D (2013) Circadian activation of the mitogen-activated protein kinase MAK-1 facilitates rhythms in clock-controlled cenes in Neurospora crassa. Eukaryot Cell 12:59–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berkes CA, Chan LL-Y, Wilkinson A, Paradis B (2012) Rapid quantification of pathogenic fungi by Cellometer image-based cytometry. J Microbiol Methods 91:468–476

    Article  CAS  PubMed  Google Scholar 

  • Bertrand H, Griffiths AJ, Cheng CK (1986) An extrachromosomal plasmid is the etiological precursor of kalDNA insertion sequences in the mitochrondrial chromosome of senescent Neurospora. Cell 47:829–837

    Article  CAS  PubMed  Google Scholar 

  • Bitterman KJ, Medvedik O, Sinclair DA (2003) Longevity regulation in Saccharomyces cerevisiae: linking metabolism, genome stability, and heterochromatin. Microbiol Mol Biol R 67:376–399

    Article  CAS  Google Scholar 

  • Bok J-W, Ishida K-I, Griffiths AJ (2003) Ultrastructural changes in Neurospora cells undergoing senescence induced by Kalilo plasmids. Mycologia 95:500–505

    Article  PubMed  Google Scholar 

  • Bonafè M et al (2003) Polymorphic variants of insulin-like growth factor I (IGF-I) receptor and phosphoinositide 3-kinase genes affect IGF-I plasma levels and human longevity: cues for an evolutionarily conserved mechanism of life span control. J Clin Endocrinol Metab 88:3299–3304

    Article  PubMed  Google Scholar 

  • Borghouts C, Osiewacz H (1998) GRISEA, a copper-modulated transcription factor from Podospora anserina involved in senescence and morphogenesis, is an ortholog of MAC1 in Saccharomyces cerevisiae. Mol Gen Genet MGG 260:492–502

    Article  CAS  PubMed  Google Scholar 

  • Borghouts C, Kimpel E, Osiewacz HD (1997) Mitochondrial DNA rearrangements of Podospora anserina are under the control of the nuclear gene grisea. Proc Natl Acad Sci USA 94:10768–10773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunner M, Káldi K (2008) Interlocked feedback loops of the circadian clock of Neurospora crassa. Mol Microbiol 68:255–262

    Article  CAS  PubMed  Google Scholar 

  • Brunson JK, Griffith J, Bowlles D, Case ME, Arnold J (2016) LAC-1 and LAG-1 with RAS-1 affect aging and the biological clock in Neurospora crassa. Ecol Evol (in press)

    Google Scholar 

  • Burnett C et al (2011) Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477:482–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Case ME et al (2014) The aging biological clock in Neurospora crassa. Ecol Evol 4:3494–3507. doi:10.1002/ece3.1202

  • Castro-Longoria E, Ferry M, Bartnicki-Garcia S, Hasty J, Brody S (2010) Circadian rhythms in Neurospora crassa: Dynamics of the clock component frequency visualized using a fluorescent reporter. Fungal Genet Biol 47:332–341

    Google Scholar 

  • Chen Y et al (2008) Variations in DNA elucidate molecular networks that cause disease. Nature 452:429–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen HY et al (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305:390–392

    Google Scholar 

  • Collis SJ et al (2007) HCLK2 is essential for the mammalian S-phase checkpoint and impacts on Chk1 stability. Nat Cell Biol 9:U362–391

    Article  Google Scholar 

  • Crosthwaite SK, Dunlap JC, Loros JJ (1997) Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity. Science 276:763–769 (1997)

    Google Scholar 

  • Davis RH (2000) Neurospora: contributions of a model organism. Oxford University Press

    Google Scholar 

  • de Paula RM et al (2006) Two circadian timing circuits in Neurospora crassa cells share components and regulate distinct rhythmic processes. J Biol Rhythms 21:159–168

    Article  PubMed  Google Scholar 

  • Delaney JR et al (2011) Sir2 deletion prevents lifespan extension in 32 long-lived mutants. Aging Cell 10:1089–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dharmananda S (1980) Studies of the circadian Clock of Neurospora crassa: light-induced phase shifting. University of California

    Google Scholar 

  • D’Mello NP et al (1994) Cloning and characterization of LAG1, a longevity-assurance gene in yeast. J Biol Chem 269:15451–15459

    PubMed  Google Scholar 

  • Dong W et al (2008) Systems biology of the clock in Neurospora crassa. PLoS ONE 3:e3105

    Article  PubMed  PubMed Central  Google Scholar 

  • Dovzhenok AA, Baek M, Lim S, Hong CI (2015) Mathematical modeling and validation of glucose compensation of the Neurospora circadian clock. Biophys J 108:1830–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dufour E, Boulay J, Rincheval V, Sainsard-Chanet A (2000) A causal link between respiration and senescence in Podospora anserina. Proc Natl Acad Sci USA 97:4138–4143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunlap JC (1999) Molecular bases for circadian clocks. Cell 96:271–290

    Article  CAS  PubMed  Google Scholar 

  • Edgar RS et al (2012) Peroxiredoxins are conserved markers of circadian rhythms. Nature 485:459–464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD (2001) Regulation of longevity and stress resistance by Sch9 in yeast. Science 292:288–290

    Google Scholar 

  • Farajnia S et al (2012) Evidence for neuronal desynchrony in the aged suprachiasmatic nucleus clock. J Neurosci 32:5891–5899

    Article  CAS  PubMed  Google Scholar 

  • Feser J et al (2010) Elevated histone expression promotes life span extension. Mol Cell 39:724–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner GF, Feldman JF (1981) Temperature compensation of circadian period length in clock mutants of Neurospora crassa. Plant Physiol 68:1244–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gery S et al (2006) The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol Cell 22:375–382

    Article  CAS  PubMed  Google Scholar 

  • Gill S, Le HD, Melkani GC, Panda S (2015) Time-restricted feeding attenuates age-related cardiac decline in Drosophila. Science 347:1265–1269

    Google Scholar 

  • Gooch VD et al (2008) Fully codon-optimized luciferase uncovers novel temperature characteristics of the Neurospora clock. Eukaryot Cell 7:28–37

    Article  CAS  PubMed  Google Scholar 

  • Guillas I et al (2001) C26-CoA-dependent ceramide synthesis of Saccharomyces cerevisiae is operated by Lag1p and Lac1p. EMBO J 20:2655–2665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gustin MC, Albertyn J, Alexander M, Davenport K (1998) MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol R 62:1264

    Google Scholar 

  • Gyöngyösi N, Káldi K (2014) Interconnections of reactive oxygen species homeostasis and circadian rhythm in Neurospora crassa. Antioxid Redox Signal 20:3007–3023

    Article  PubMed  Google Scholar 

  • Hagberg B (2007) Developing models of longevity. Ann Rev Gerontol Geriatr 27:205–230

    Google Scholar 

  • Hannun YA, Obeid LM (2011) Many ceramides. J Biol Chem 286:27855–27862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harkness TA, Shea KA, Legrand C, Brahmania M, Davies GF (2004) A functional analysis reveals dependence on the anaphase-promoting complex for prolonged life span in yeast. Genetics 168:759–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harman D (1955) Aging: a theory based on free radical and radiation chemistry

    Google Scholar 

  • Harmer SL et al (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. 290:2110–2113

    Google Scholar 

  • Haydon MJ, Mielczarek O, Robertson FC, Hubbard KE, Webb AA (2013) Photosynthetic entrainment of the Arabidopsis thaliana circadian clock. Nature 502:689–692

    Article  CAS  PubMed  Google Scholar 

  • Hofman MA, Swaab DF (2006) Living by the clock: the circadian pacemaker in older people. Ageing Res Rev 5:33–51

    Article  CAS  PubMed  Google Scholar 

  • Hong CI et al (2014) Circadian rhythms synchronize mitosis in Neurospora crassa. Proc Natl Acad Sci USA 111:1397–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howitz KT et al (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196

    Article  CAS  PubMed  Google Scholar 

  • Hurley JM et al (2014) Analysis of clock-regulated genes in Neurospora reveals widespread posttranscriptional control of metabolic potential. Proc Natl Acad Sci 111:16995–17002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurley JM, Loros JJ, Dunlap JC (2015) The circadian system as an organizer of metabolism. Fungal Genet Biol 90:39–43

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwangbo DS, Gersham B, Tu M-P, Palmer M, Tatar M (2004) Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 429:562–566

    Article  CAS  PubMed  Google Scholar 

  • Jazwinski SM (2002) Growing old: metabolic control and yeast aging. Ann Rev Microbiol 56:769–792

    Article  CAS  Google Scholar 

  • Jazwinski SM (2011) Aging research in yeast. Springer, Berlin, pp 79–100

    Google Scholar 

  • Jazwinski SM et al (2010) HRAS1 and LASS1 with APOE are associated with human longevity and healthy aging. Aging Cell 9:698–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang JC, Kirchman PA, Zagulski M, Hunt J, Jazwinski SM (1998) Homologs of the yeast longevity gene LAG1 in Caenorhabditis elegans and human. Genome Res 8:1259–1272

    Article  CAS  PubMed  Google Scholar 

  • Jiang JC, Kirchman PA, Allen M, Jazwinski SM (2004) Suppressor analysis points to the subtle role of the LAG1 ceramide synthase gene in determining yeast longevity. Exp Gerontol 39:999–1009

    Article  CAS  PubMed  Google Scholar 

  • Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13:2570–2580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenyon C (2011) The first long-lived mutants: discovery of the insulin/IGF-1 pathway for ageing. Philos Trans R Soc Lond B Biol Sci 366:9–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Benguria A, Lai C-Y, Jazwinski SM (1999) Modulation of Life-span by histone deacetylase genes in Saccharomyces cerevisiae. Mol Biol Cell 10:3125–3136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S et al (2012) Telomere maintenance genes SIRT1 and XRCC6 impact age-related decline in telomere length but only SIRT1 is associated with human longevity. Biogerontology 13:119–131

    Article  CAS  PubMed  Google Scholar 

  • Ko CH et al (2010) Emergence of noise-induced oscillations in the central circadian pacemaker. PLoS Biol 8:e1000513

    Article  PubMed  PubMed Central  Google Scholar 

  • Lakin-Thomas PL, Brody S (2000) Circadian rhythms in Neurospora crassa: lipid deficiencies restore robust rhythmicity to null frequency and white-collar mutants. Proc Natl Acad Sci 97:256–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakin-Thomas PL, Bell-Pedersen D, Brody S (2011) 3 The genetics of circadian rhythms in Neurospora. Adv Genet 74:55

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lakowski B, Hekimi S (1996) Determination of life-span in Caenorhabditis elegans by four clock genes. Science 272:1010–1013

    Google Scholar 

  • Lindgren KM (1994) Characterization of ccg-1, a clock-controlled gene of Neurospora crassa. PhD dissertation, Dartmouth College

    Google Scholar 

  • Liu Y, Merrow M, Loros JJ, Dunlap JC (1998) How temperature changes reset a circadian oscillator. Science 281:825–829

    Google Scholar 

  • López-Otín C, Galluzzi L, Freije JM, Madeo F, Kroemer G (2016) Metabolic control of longevity. Cell 166:802–821

    Article  PubMed  Google Scholar 

  • Lu T et al (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429:883–891

    Article  CAS  PubMed  Google Scholar 

  • Magnanou E, Attia J, Fons R, Boeuf G, Falcon J (2009) The timing of the shrew: continuous melatonin treatment maintains youthful rhythmic activity in aging Crocidura russula. PLoS ONE 4:e5904

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin P (2007) Personality and coping among centenarians. Ann Rev Gerontol Geriatr 27:89–106

    Google Scholar 

  • McClung CR, Fox BA, Dunlap JC (1989) The Neurospora clock gene frequency shares a sequence element with the Drosophila clock gene period

    Google Scholar 

  • McNamara P et al (2001) Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock. Cell 105:877–889

    Article  CAS  PubMed  Google Scholar 

  • Melov S et al (2000) Extension of life-span with superoxide dismutase/catalase mimetics. Science 289:1567–1569

    Google Scholar 

  • Munkres KD, Furtek CA (1984a) Assay of rate of aging of conidia of Neurospora crassa. Methods Enzymol 105:263–270

    Article  CAS  PubMed  Google Scholar 

  • Munkres KD, Furtek CA (1984b) Linkage of conidial longevity determinant genes in Neurospora crassa. Mech Ageing Dev 25:63–77

    Article  CAS  PubMed  Google Scholar 

  • Munkres KD, Rana RS, Goldstein E (1984) Genetically determined conidial longevity is positively correlated with superoxide dismutase, catalase, glutathione peroxidase, cytochrome c peroxidase, and ascorbate free radical reductase activities in Neurospora crassa. Mech Ageing Dev 24:83–100

    Article  CAS  PubMed  Google Scholar 

  • Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324:654–657

    Google Scholar 

  • Nebel A et al (2009) A functional EXO1 promoter variant is associated with prolonged life expectancy in centenarians. Mech Ageing Dev 130:691–699

    Article  CAS  PubMed  Google Scholar 

  • Noguchi R et al (2007) Identification of OS-2 MAP kinase-dependent genes induced in response to osmotic stress, antifungal agent fludioxonil, and heat shock in Neurospora crassa. Fungal Genet Biol 44:208–218

    Article  CAS  PubMed  Google Scholar 

  • Ono D, Honma S, Honma K-I (2013) Cryptochromes are critical for the development of coherent circadian rhythms in the mouse suprachiasmatic nucleus. Nat Commun 4:1666

    Article  PubMed  Google Scholar 

  • Osiewacz HD (2002) Mitochondrial functions and aging. Gene 286:65–71

    Article  CAS  PubMed  Google Scholar 

  • Paijmans J, Bosman M, Ten Wolde PR, Lubensky DK (2016) Discrete gene replication events drive coupling between the cell cycle and circadian clocks. Proc Natl Acad Sci USA 113:4063–4068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panda S et al (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109:307–320

    Article  CAS  PubMed  Google Scholar 

  • Perelis M et al (2015) Pancreatic β cell enhancers regulate rhythmic transcription of genes controlling insulin secretion. Science 350:aac4250

    Google Scholar 

  • Pittendrigh CS, Minis DH (1972) Circadian systems: longevity as a function of circadian resonance in Drosophila melanogaster. Proc Natl Acad Sci USA 69:1537–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plesofsky NS, Levery SB, Castle SA, Brambl R (2008) Stress-induced cell death is mediated by ceramide synthesis in Neurospora crassa. Eukaryot Cell 7:2147–2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poon LW, Perls TT (2008) Biopsychosocial approaches to longevity. Springer, Berlin

    Google Scholar 

  • Poon LW et al (2011) Georgian centenarian study. https://www.youtube.com/watch?v=nUEP8se3oUs

  • Postnikoff SDL, Harkness TAA (2012) Front Physiol, vol 3, doi:10.3389/fphys.2012.00183

  • Postnikoff SD, Malo ME, Wong B, Harkness TA (2012) The yeast forkhead transcription factors fkh1 and fkh2 regulate lifespan and stress response together with the anaphase-promoting complex. PLoS Genet 8:e1002583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pregueiro AM, Liu Q, Baker CL, Dunlap JC, Loros JJ (2006) The Neurospora checkpoint kinase 2: a regulatory link between the circadian and cell cycles. Science 313:644–649

    Google Scholar 

  • Ramsey KM et al (2009) Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324:651–654

    Google Scholar 

  • Rey G et al (2016) The pentose phosphate pathway regulates the circadian clock. Cell Metab

    Google Scholar 

  • Rodriguez-Trelles F, Tarrio R, Ayala FJ (2001) Erratic overdispersion of three molecular clocks: GPDH, SOD, and XDH. Proc Natl Acad Sci USA 98:11405–11410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 101:15998–16003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose MR (1991) Evolutionary biology of aging. Oxford University Press

    Google Scholar 

  • Roux AE et al (2009) Pro-aging effects of glucose signaling through a G protein-coupled glucose receptor in fission yeast. PLoS Genet 5:e1000408

    Article  PubMed  PubMed Central  Google Scholar 

  • Sancar G, Sancar C, Brunner M (2012) Metabolic compensation of the Neurospora clock by a glucose-dependent feedback of the circadian repressor CSP1 on the core oscillator. Genes Dev 26:2435–2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh A et al (2013) Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab 18:416–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schorling S, Vallée B, Barz WP, Riezman H, Oesterhelt D (2001) Lag1p and Lac1p are essential for the Acyl-CoA-dependent ceramide synthase reaction in Saccharomyces cerevisae. Mol Biol Cell 12:3417–3427

    Google Scholar 

  • Schumacher B et al (2008) Delayed and accelerated aging share common longevity assurance mechanisms. PLoS Genet 4:e1000161

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi M, Larrondo LF, Loros JJ, Dunlap JC (2007) A developmental cycle masks output from the circadian oscillator under conditions of choline deficiency in Neuropsora. PNAS USA 104:20102–20107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon K et al (2009) Transcriptional profiling of the age-related response to genotoxic stress points to differential DNA damage response with age. Mech Ageing Dev 130:637–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spassieva SD et al (2016) Ectopic expression of ceramide synthase 2 in neurons suppresses neurodegeneration induced by ceramide synthase 1 deficiency. Proc Natl Acad Sci 113:5928–5933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suh Y et al (2008) Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci 105:3438–3442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szilard L (1959) On the nature of the aging process. PNAS USA 45:30–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tissenbaum HA, Guarente L (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410:227–230

    Article  CAS  PubMed  Google Scholar 

  • Vitalini MW et al (2007) Circadian rhythmicity mediated by temporal regulation of the activity of p38 MAPK. Proc Natl Acad Sci USA 104:18223–18228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb AB, Angelo N, Huettner JE, Herzog ED (2009) Intrinsic, nondeterministic circadian rhythm generation in identified mammalian neurons. Proc Natl Acad Sci USA 106:16493–16498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei M et al (2008) Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS Genet 4:e13

    Article  PubMed  PubMed Central  Google Scholar 

  • Wijnen H, Naef F, Boothroyd C, Claridge-Chang A, Young MW (2006) Control of daily transcript oscillations in Drosophila by light and the circadian clock. PLoS Genet 2:e39

    Article  PubMed  PubMed Central  Google Scholar 

  • Willcox BJ et al (2008) FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci USA 105:13987–13992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright RM, Horrum MA, Cummings DJ (1982) Are mitochondrial structural genes selectively amplified during senescence in Podospora anserina? Cell 29:505–515

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi S et al (2003) Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302:1408–1412

    Google Scholar 

  • Yamashita K et al (2007) Involvement of OS-2 MAP kinase in regulation of the large-subunit catalases CAT-1 and CAT-3 in Neurospora crassa. Genes Genet Syst 82:301–310

    Article  CAS  PubMed  Google Scholar 

  • Yamashita K et al (2008) ATF-1 transcription factor regulates the expression of ccg-1 and cat-1 genes in response to fludioxonil under OS-2 MAP kinase in Neurospora crassa. Fungal Genet Biol 45:1562–1569

    Article  CAS  PubMed  Google Scholar 

  • Yoshida Y, Iigusa H, Wang N, Hasunuma K (2011) Cross-talk between the cellular redox state and the circadian system in Neurospora. PLoS ONE 6:e28227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y et al (2007) A genetic network for the clock of Neurospora crassa. Proc Natl Acad Sci USA 104:2809–2814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahn JM et al (2007) AGEMAP: a gene expression database for aging in mice. PLoS Genet 3:e201

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu G et al (2000) Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature 406:90–94

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF MCB-SSB/PHY-POLS-1713746.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Arnold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Judge, M., Griffith, J., Arnold, J. (2017). Aging and the Biological Clock. In: Jazwinski, S., Belancio, V., Hill, S. (eds) Circadian Rhythms and Their Impact on Aging. Healthy Ageing and Longevity, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-64543-8_10

Download citation

Publish with us

Policies and ethics