Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1019))

Abstract

The application of next generation sequencing technologies has opened the door to a new molecular epidemiology of tuberculosis, in which we can now look at transmission at a resolution not possible before. At the same time, new technical and analytical challenges have appeared, and we are still exploring the wider potential of this new technology. Whole genome sequencing in tuberculosis still requires bacterial cultures. Thus, although whole genome sequencing has revolutionized the interpretation of transmission patterns, it is not yet ready to be applied at the point-of-care. In this chapter, I will review the promises and challenges of genomic epidemiology, as well as some of the new questions that have arisen from the use of this new technology. In addition, I will examine the role of molecular epidemiology within the general frame of global tuberculosis control and how genomic epidemiology can contribute towards the elimination of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andries K, Villellas C, Coeck N et al (2014) Acquired resistance of Mycobacterium tuberculosis to bedaquiline. PLoS One 9:e102135

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Biek R, Pybus OG, Lloyd-Smith JO, Didelot X (2015) Measurably evolving pathogens in the genomic era. Trends Ecol Evol 30:306ā€“313

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Black PA, de Vos M, Louw GE et al (2015) Whole genome sequencing reveals genomic heterogeneity and antibiotic purification in Mycobacterium tuberculosis isolates. BMC Genomics 16:857

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bloemberg GV, Keller PM, Stucki D et al (2015) Acquired resistance to bedaquiline and delamanid int for tuberculosis. N Engl J Med 373:1986ā€“1988

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bradley P, Gordon NC, Walker TM et al (2015) Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat Commun 6:10063

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Brown AC, Bryant JM, Einer-Jensen K et al (2015) Rapid whole-genome sequencing of Mycobacterium tuberculosis isolates directly from clinical samples. J Clin Microbiol 53:2230ā€“2237

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bryant JM, Harris SR, Parkhill J et al (2013a) Whole-genome sequencing to establish relapse or re-infection with Mycobacterium tuberculosis: a retrospective observational study. Lancet Respir Med 1:786ā€“792

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bryant JM, SchĆ¼rch AC, van Deutekom H et al (2013b) Inferring patient to patient transmission of Mycobacterium tuberculosis from whole genome sequencing data. BMC Infect Dis 13:110

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Casali N, Nikolayevskyy V, Balabanova Y et al (2014) Evolution and transmission of drug-resistant tuberculosis in a Russian population. Nat Genet 46:279ā€“286

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Cohen K, Abeel T, Manson McGuire A et al (2015) Evolution of extensively drug-resistant tuberculosis over four decades: whole genome sequencing and dating analysis of Mycobacterium tuberculosis isolates from KwaZulu-Natal. PLoS Med 12:1ā€“22

    ArticleĀ  Google ScholarĀ 

  • Colangeli R, Arcus VL, Cursons RT et al (2014) Whole genome sequencing of Mycobacterium tuberculosis reveals slow growth and low mutation rates during latent infections in humans. PLoS One 9:e91024

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Cole ST, Brosch R, Parkhill J et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537ā€“544

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Colman RE, Schupp JM, Hicks ND et al (2015) Detection of low-level mixed-population drug resistance in Mycobacterium tuberculosis using high fidelity amplicon sequencing. PLoS One 10:e0126626

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Comas I, Gagneux S (2009) The past and future of tuberculosis research. PLoS Pathog 5:e1000600

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Comas I, Chakravartti J, Small PM et al (2010) Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat Genet 42:498ā€“503

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Comas I, Borrell S, Roetzer A et al (2012) Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet 44:106ā€“110

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Copin R, Coscolla M, Seiffert SN et al (2014) Sequence diversity in the pe_pgrs genes of Mycobacterium tuberculosis is independent of human T cell recognition. MBio 5:e00960ā€“e00913

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Coscolla M, Barry PM, Oeltmann JE et al (2015) Genomic epidemiology of multidrug-resistant Mycobacterium tuberculosis during transcontinental spread. J Infect Dis 15:383ā€“388

    Google ScholarĀ 

  • Didelot X, Gardy J, Colijn C (2013) Bayesian inference of infectious disease transmission from whole genome sequence data. Mol Biol Evol 31:1869ā€“1879

    ArticleĀ  Google ScholarĀ 

  • Didelot X, Walker AS, Peto TE et al (2016) Within-host evolution of bacterial pathogens. Nat Rev Microbiol 14:150ā€“162

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Doughty EL, Sergeant MJ, Adetifa I et al (2014) Culture-independent detection and characterisation of Mycobacterium tuberculosis and M. africanum in sputum samples using shotgun metagenomics on a benchtop sequencer. PeerJ 2:e585

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • du Plessis L, Stadler T (2015) Getting to the root of epidemic spread with phylodynamic analysis of genomic data. Trends Microbiol 23:383ā€“386

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Dye C, Glaziou P, Floyd K, Raviglione M (2013) Prospects for tuberculosis elimination. Annu Rev Public Health 34:271ā€“286

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Eldholm V, Norheim G, von der Lippe B et al (2014) Evolution of extensively drug-resistant Mycobacterium tuberculosis from a susceptible ancestor in a single patient. Genome Biol 15:490

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Eldholm V, Monteserin J, Rieux A et al (2015) Four decades of transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak strain. Nat Commun 6:7119

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ford CB, Lin PL, Chase MR et al (2011) Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat Genet 43:482ā€“486

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ford CB, Shah RR, Maeda MK et al (2013) Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat Genet 45:784ā€“790

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Gardy JL, Johnston JC, Sui SJH et al (2011) Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N Engl J Med 364:730ā€“739

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Gillespie SH, Crook AM, McHugh TD et al (2014) Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N Engl J Med 371:1577ā€“1587

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Gordienko EN, Kazanov MD, Gelfand MS (2013) Evolution of pan-genomes of Escherichia coli, Shigella spp., and Salmonella enterica. J Bacteriol 195:2786ā€“2792

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Grenfell BT, Pybus OG, Gog JR et al (2004) Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303(80):327ā€“332

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Guerra-AssunĆ§Ć£o JA, Crampin AC, Houben RMGJ et al (2015a) Large-scale whole genome sequencing of M. tuberculosis provides insights into transmission in a high prevalence area. elife 4:1ā€“17

    ArticleĀ  Google ScholarĀ 

  • Guerra-AssunĆ§Ć£o JA, Houben RMGJ, Crampin AC et al (2015b) Recurrence due to relapse or reinfection with Mycobacterium tuberculosis: a whole-genome sequencing approach in a large, population-based cohort with a high HIV infection prevalence and active follow-up. J Infect Dis 211:1154ā€“1163

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Hatherell H-A, Colijn C, Stagg HR et al (2016) Interpreting whole genome sequencing for investigating tuberculosis transmission: a systematic review. BMC Med 14:21

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Johnston JC, Khan FA, Dowdy DW (2015) Reducing relapse in tuberculosis treatment: is it time to reassess WHO treatment guidelines? Int J Tuberc Lung Dis 19:624

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Jombart T, Cori A, Didelot X et al (2014) Bayesian eeconstruction of disease outbreaks by combining epidemiologic and genomic data. PLoS Comput Biol 10:e1003457

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kay GL, Sergeant MJ, Zhou Z et al (2015) Eighteenth-century genomes show that mixed infections were common at time of peak tuberculosis in Europe. Nat Commun 6:6717

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • KĆ¼hnert D, Stadler T, Vaughan TG, Drummond AJ (2014) Simultaneous reconstruction of evolutionary history and epidemiological dynamics from viral sequences with the birth-death SIR model. J R Soc Interface 11:20131106

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Liu Q, Via LE, Luo T et al (2015) Within patient microevolution of Mycobacterium tuberculosis correlates with heterogeneous responses to treatment. Sci Rep 5:17507

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Loman NJ, Pallen MJ (2015) Twenty years of bacterial genome sequencing. Nat Rev Microbiol:1ā€“9

    Google ScholarĀ 

  • Niemann S, Kƶser CU, Gagneux S et al (2009) Genomic diversity among drug sensitive and multidrug resistant isolates of Mycobacterium tuberculosis with identical DNA fingerprints. PLoS One 4:e7407

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Oā€™Rawe J, Jiang T, Sun G et al (2013) Low concordance of multiple variant-calling pipelines: practical implications for exome and genome sequencing. Genome Med 5:28

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Pai M, Schito M (2015) Tuberculosis diagnostics in 2015: landscape, priorities, needs, and prospects. J Infect Dis 211(Suppl):S21ā€“S28

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • PĆ©rez-Lago L, Comas I, Navarro Y et al (2013) Whole genome sequencing analysis of intrapatient microevolution in Mycobacterium tuberculosis: potential impact on the inference of tuberculosis transmission. J Infect Dis:1ā€“11

    Google ScholarĀ 

  • Perez-Lago L, Martinez Lirola M, Herranz M et al (2015) Fast and low-cost decentralized surveillance of transmission of tuberculosis based on strain-specific PCRs tailored from whole genome sequencing data: a pilot study. Clin Microbiol Infect 21:249.e1ā€“249.e9

    ArticleĀ  CASĀ  Google ScholarĀ 

  • PĆ©rez-Lago L, Navarro Y, Montilla P et al (2015) Persistent infection by a Mycobacterium tuberculosis strain that was theorized to have advantageous properties, as it was responsible for a massive outbreak. J Clin Microbiol 53:3423ā€“3429

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Phelan JE, Coll F, Bergval I et al (2016) Recombination in pe/ppe genes contributes to genetic variation in Mycobacterium tuberculosis lineages. BMC Genomics 17:151

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Quail M, Smith ME, Coupland P et al (2012) A tale of three next generation sequencing platforms: comparison of Ion torrent, pacific biosciences and illumina MiSeq sequencers. BMC Genomics 13:1

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Quick J, Loman NJ, Duraffour S et al (2016) Real-time, portable genome sequencing for Ebola surveillance. Nature 530:228ā€“232

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Rasmussen DA, Ratmann O, Koelle K (2011) Inference for nonlinear epidemiological models using genealogies and time series. PLoS Comput Biol 7:e1002136

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Rocha EPC, Smith JM, Hurst LD et al (2006) Comparisons of dN/dS are time dependent for closely related bacterial genomes. J Theor Biol 239:226ā€“235

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Roetzer A, Diel R, Kohl TA et al (2013) Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study. PLoS Med 10:e1001387

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Schurch AC, Kremer K, Daviena O et al (2010) High resolution typing by integration of genome sequencing data in a large tuberculosis cluster. J Clin Microbiol 48:3403ā€“3406

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Stadler T, KĆ¼hnert D, Bonhoeffer S, Drummond AJ (2012) Birth ā€“ death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). Proc Natl Acad Sci U S A 110:228ā€“233

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Sterling TR, Lehmann HP, Frieden TR (2003) Impact of DOTS compared with DOTS-plus on multidrug resistant tuberculosis and tuberculosis deaths: decision analysis. BMJ 326:574

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Stucki D, Ballif M, Bodmer T et al (2015a) Tracking a tuberculosis outbreak over 21 years: strain-specific single-nucleotide polymorphism typing combined with targeted whole-genome sequencing. J Infect Dis 211:1306ā€“1316

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Stucki D, Ballif M, Egger M et al (2015b) Standard genotyping overestimates transmission of Mycobacterium tuberculosis among immigrants in a low-incidence country. J Clin Microbiol 7:1862ā€“1870

    Google ScholarĀ 

  • Sun G, Luo T, Yang C et al (2012) Dynamic population changes in Mycobacterium tuberculosis during acquisition and fixation of drug resistance in patients. J Infect Dis 206:1724ā€“1733

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Tameris MD, Hatherill M, Landry BS et al (2013) Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 6736:1ā€“8

    Google ScholarĀ 

  • Van Rie A, Victor TC, Richardson M et al (2005) Reinfection and mixed infection cause changing Mycobacterium tuberculosis drug-resistance patterns. Am J Respir Crit Care Med 172:636ā€“642

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Van Soolingen D (2014) Whole-genome sequencing of Mycobacterium tuberculosis as an epidemiological marker. Lancet Respir Med 4:251ā€“252

    ArticleĀ  Google ScholarĀ 

  • Votintseva AA, Bradley P, Pankhurst L, Del Ojo Elias C, Loose M, Nilgiriwala K, Chatterjee A, Smith EG, Sanderson N, Walker TM, Morgan MR, Wyllie DH, Walker AS, Peto TEA, Crook DW, Iqbal Z (2017) Same-day diagnostic and surveillance data for tuberculosis via whole-genome sequencing of direct respiratory samples. J Clin Microbiol 55(5):1285ā€“1298

    Google ScholarĀ 

  • Walker TM, Ip CL, Harrell RH et al (2013a) Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis 13:137ā€“146

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Walker TM, Monk P, Smith EG, Peto TE a (2013b) Contact investigations for outbreaks of Mycobacterium tuberculosis: advances through whole genome sequencing. Clin Microbiol Infect 19:796ā€“802

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • World Health Organization (2015). Global tuberculosis report

    Google ScholarĀ 

  • Yates TA, Khan PY, Knight GM et al (2016) The transmission of Mycobacterium tuberculosis in high burden settings. Lancet Infect Dis 16:227ā€“238

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Yozwiak NL, Schaffner SF, Sabeti PC (2015) Data sharing: make outbreak research open access. Nature 518:477ā€“479

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zumla A, Memish ZA, Maeurer M et al (2014) Emerging novel and antimicrobial-resistant respiratory tract infections: new drug development and therapeutic options. Lancet Infect Dis 14:1136ā€“1149

    ArticleĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgements

I thank the members of my group for stimulating discussions. Work in my laboratory is supported by the Spanish National Foundation (MINECO SAF2013-43521-R) and the European Research Council (638553-TB-ACCELERATE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to IƱaki Comas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Comas, I. (2017). Genomic Epidemiology of Tuberculosis. In: Gagneux, S. (eds) Strain Variation in the Mycobacterium tuberculosis Complex: Its Role in Biology, Epidemiology and Control. Advances in Experimental Medicine and Biology, vol 1019. Springer, Cham. https://doi.org/10.1007/978-3-319-64371-7_4

Download citation

Publish with us

Policies and ethics