Skip to main content

Power Grids as Synergetic Systems

  • Chapter
  • First Online:
Complexity and Synergetics

Abstract

In this article we study power grids from the viewpoint of Synergetics. We show that the typical behavior of self-organizing systems like phase transitions and critical fluctuations can be observed in models for the dynamics of power grids . Therefore we numerically investigate a model, where the phase and voltage dynamics are represented by Kuramoto-like equations. For the topology of the grid we use real world data from the northern Europe high voltage transmission grid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Haken, Synergetics—An Introduction (Springer, Heidelberg, 1983)

    MATH  Google Scholar 

  2. G. Filatrella, A.H. Nielsen, N.F. Pedersen, Analysis of a power grid using a Kuramoto-like model. Eur. Phys. J. B 61, 485–491 (2008)

    Article  Google Scholar 

  3. Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillator, in International Symposium on Mathematical Problems in Theoretical Physics Lecture Notes, pp. 420–422, 1975

    Google Scholar 

  4. S.H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1–202 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. J.A. Acebrón, L.L. Bonilla, C.J. Pérez Vicente, F. Ritort, R. Spigler, The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005)

    Article  Google Scholar 

  6. M. Rohden, A. Sorge, M. Timme, D. Witthaut, Self-organized synchronization in decentralized power grids. Phys. Rev. Lett. 109, 064101 (2012)

    Article  Google Scholar 

  7. P.J. Menck, J. Heitzig, J. Kurths, H.J. Schellnhuber, How dead ends undermine power grid stability. Nat. Commun. 5, 3969 (2014)

    Article  Google Scholar 

  8. D. Witthaut, M. Timme, Braess’s paradox in oscillator networks, desynchronization and power outage. New J. Phys. 14, 083036 (2012)

    Article  Google Scholar 

  9. Y. Susuki, I. Mezic, T. Hikihara, Global swing instability of multimachine power systems, in 47th IEEE Conference on Decision and Control, pp. 2487–2492, 2008

    Google Scholar 

  10. P. Menck, J. Heitzig, N. Marwan, J. Kurths, How basin stability complements the linear-stability paradigm. Nat. Phys. 9, 89–92 (2013)

    Article  Google Scholar 

  11. K. Schmietendorf, J. Peinke, O. Kamps, R. Friedrich, Self-organized synchronization and voltage stability an networks of synchronous machines. Eur. Phys. J. 223, 2577–2592 (2014)

    Google Scholar 

  12. P. Kundur, N.J. Balu, M.G. Lauby, Power System Stability and Control (McGraw-Hill, New York, 1994)

    Google Scholar 

  13. F. Dörfler, F. Bullo, Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators, in American Control Conference, pp. 930–937, 2010

    Google Scholar 

  14. P. Hines, S. Blumsack, E. Cotilla Sanchez, C. Barrows, The topological and electrical structure of power grids, in 43rd Hawaii International Conference on System Sciences, pp. 1–10, 2010

    Google Scholar 

  15. P. Schultz, J. Heitzig, J. Kurths, A random growth model for power grids and other spatially embedded infrastructure networks. Eur. Phys. J. 223, 12 (2014)

    Google Scholar 

  16. J. Machowski, J. Bialek, D.J. Bumby, Power System Dynamics: Stability and Control (Wiley, New York, 2008)

    Google Scholar 

  17. H.-A. Tanaka, A.J. Lichtenberg, S. Oishi, First order phase transition resulting from finite inertia in coupled oscillator systems. Phys. Rev. Lett. 78, 2104–2107 (1997)

    Article  Google Scholar 

  18. H. Haken, J.A.S. Kelso, H. Bunz, A theoretical model of phase transitions in human hand movements. Biol. Cybern. 51, 347–356 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  19. G. Schöner, H. Haken, J.A.S. Kelso, A stochastic theory of phase transitions in human hand movement. Biol. Cybern. 53, 247–257 (1986)

    Article  MATH  Google Scholar 

  20. A.P. Tass, Desynchronization of brain rhythms with soft phase-resetting techniques. Biol. Cybern. 87, 102–115 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Kamps .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamps, O., Schmietendorf, K. (2018). Power Grids as Synergetic Systems. In: Müller, S., Plath, P., Radons, G., Fuchs, A. (eds) Complexity and Synergetics. Springer, Cham. https://doi.org/10.1007/978-3-319-64334-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64334-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64333-5

  • Online ISBN: 978-3-319-64334-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics