Skip to main content

Financial Market Models

  • Chapter
  • First Online:
Complexity and Synergetics

Abstract

The dynamics of financial markets are discussed. After a brief introduction of the price formation process, we review the statistical features (also known as “stylized facts”) of stock return time series, which exhibit fat tails and intermittent periods of higher or lower volatility. Several models aimed at understanding the mechanisms that lead to these seemingly ubiquitous features of financial markets are then reviewed. Those models have largely been developed within the Econophysics community but we emphasize here that they all contain elements consistent with a Synergetic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Haken, Synergetics: An Introduction (Springer, Heidelberg, 1977)

    Book  MATH  Google Scholar 

  2. J.-P. Bouchaud, Y. Gefen, M. Potters, M. Wyart, Fluctuations and response in financial markets: The subtle nature of random price changes. Quant. Finan. 4, 176–190 (2004)

    Article  Google Scholar 

  3. J.-P. Bouchaud, J.D. Farmer, F. Lillo, How markets slowly digest changes in supply and demand, in Handbook of Financial Markets: Dynamics and Evolution (Elsvier, Amsterdam, 2009), pp. 57–160

    Google Scholar 

  4. F. Lillo, J.D. Farmer, R.N. Mantegna, Econophysics: master curve for price-impact function. Nature 421, 129–130 (2003)

    Article  Google Scholar 

  5. R. Cont, S. Stoikov, R. Talreja, A stochastic model for order book dynamics. Oper. Res. 58, 549–563 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. E. Bacry, J.-F. Muzy, Hawkes model for price and trades high-frequency dynamics. Quant. Finan. 14, 1147–1166 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Alfonsi, P. Blanc, Dynamical optimal execution in a market-impact Hawkes price model, in Finance and Stochastics (Springer, Heidelberg, 2015), pp. 1–36

    Google Scholar 

  8. P. Gopikrishnan, V. Plerou, L.A. Nunes Amaral, M. Meyer, H.E. Stanley, Scaling of the distribution of fluctuations of financial market indices. Phys. Rev. E 60, 5305 (1999)

    Article  Google Scholar 

  9. X. Gabaix, P. Gopikrishnan, V. Plerou, H.E. Stanley, A theory of power-law distributions in financial market fluctuations. Nature 423, 267 (2003)

    Article  MATH  Google Scholar 

  10. J.-P. Bouchaud, M. Potters, Theory of Financial Risks and Derivative Pricing (Cambridge University Press, Cambridge, 2004)

    MATH  Google Scholar 

  11. J.-P. Bouchaud, A. Matacz, M. Potters, Leverage effect in financial markets: The retarded volatility model. Phys. Rev. Lett. 87, 228701 (2001)

    Article  Google Scholar 

  12. P.E. Lynch, G.O. Zumbach, Market heterogeneities and the causal structure of volatility. Quant. Finan. 3, 320–331 (2003)

    Article  Google Scholar 

  13. L. Borland, J.-P. Bouchaud, On a multi timescale statistical feedback model for volatility fluctuations. J. Invest. Strateg. 1, 65–104 (2011)

    Article  Google Scholar 

  14. H. Levy, M. Levy, S. Solomon, Microscopic Simulation of Financial Markets: from Investor Behavior to Market Phenomena (Academic Press, San Diego, 2000)

    Google Scholar 

  15. M. Levy, S. Solomon, New evidence for the power-law distribution of wealth. Physica A 242, 90–94 (1997)

    Article  Google Scholar 

  16. S. Solomon, Stochastic Lotka-Volterra systems of competing auto-catalytic agents lead generically to truncated Pareto power wealth distribution, truncated levy-stable intermittent market returns, clustered volatility, booms and crashes, in Decision Technologies for Computational Finance: Proceedings of the Fifth International Conference Computational Finance, ed. by A.-P.N. Refenes, A.N. Burgess, J.E. Moody (Springer, New York, 1998), pp. 73–86

    Google Scholar 

  17. D. Challet, M. Marsili, Y.-C. Zhang, Minority Games: Interacting Agents in Financial Markets (OUP Catalogue, 2013)

    Google Scholar 

  18. T. Lux, M. Marchesi, Volatility clustering in financial markets: a microsimulation of interacting agents. Int. J. Theor. Appl. Finan. 3, 675–702 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. R. Cont, J.-P. Bouchaud, Herd behavior and aggregate fluctuations in financial markets. Macroecon. Dyn. 4, 170–196 (2000)

    Article  MATH  Google Scholar 

  20. D. Chowdhury, D. Stauffer, A generalized spin model of financial markets. Eur. Phys. J. B 8, 477–482 (1999)

    Article  Google Scholar 

  21. S. Bornholdt, Expectation bubbles in a spin model of markets: intermittency from frustration across scales. Int. J. Mod. Phys. C 12, 667–674 (2001)

    Article  Google Scholar 

  22. F. Black, M. Scholes, The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–659 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  23. S.L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Finan. Stud. 6, 327–343 (1993)

    Article  Google Scholar 

  24. T. Bollerslev, R.F. Engle, D.B. Nelson, ARCH models, in Handbook of Econometrics, vol. 4, ed. by R.F. Engle, D. McFadden (Elsevier Science, Amsterdam, 1994)

    Google Scholar 

  25. L. Borland, Option pricing formulas based on a non-Gaussian stock price model. Phys. Rev. Lett. 89, 098701 (2002); L. Borland, A theory of non-Gaussian option pricing. Quant. Finan. 2, 415–431 (2002)

    Google Scholar 

  26. L. Borland, J.-P. Bouchaud, A non-Gaussian option pricing model with skew. Quant. Finan. 4, 499–514 (2004)

    Article  MathSciNet  Google Scholar 

  27. C. Tsallis, J. Stat. Phys. 52, 479 (1988); E.M.F. Curado, C. Tsallis, J. Phys. A 24, L69 (1991); 24, 3187 (1991); 25 1019 (1992)

    Google Scholar 

  28. C. Tsallis, D.J. Bukman, Anomalous diffusion in the presence of external forces: exact time-dependent solutions and their thermostatistical basis. Phys. Rev. E 54, R2197(R) (1996)

    Article  Google Scholar 

  29. L. Borland, Microscopic dynamics of the nonlinear Fokker–Planck equation: a phenomenological model. Phys. Rev. E 57, 6634 (1998)

    Article  Google Scholar 

  30. L. Borland, Non-Gaussian option pricing: successes, limitations and perspectives, in Anomalous Fluctuation Phenomena in Complex Systems, Plasmas, Fluids and Financial Markets, ed. by C. Riccardi, H.E. Roman (Special Review Book for Research Signpost, Transworld Research Network, Kerala, India, 2008), pp. 311–333

    Google Scholar 

  31. L. Borland, Statistical signatures in times of panic: markets as a self-organizing system. Quant. Finance 12, 1367–1379 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  32. L. Borland, Y. Hassid, Market panic on different time-scales (2010), arXiv:1010.4917

  33. T. Preis, D. Kenee, H.E. Stanley, D. Helbing, W.E. Ben-Jacob, Quantifying the behavior of stock correlations under market stress. Nat. Sci. Rep. 2(752) (2012)

    Google Scholar 

  34. T. Kaizoji, Power laws and market crashes. Prog. Theor. Phys. Suppl. 162, 165–172 (2006)

    Article  MATH  Google Scholar 

  35. F. Lillo, R. Mantegna, Variety and volatility in financial markets. Phys. Rev. E 62, 6126–6134 (2000)

    Article  Google Scholar 

  36. M. Munnix, T. Shimada, R. Schafer, F. Leyvraz, T.H. Seligman, T. Guhr, H.E. Stanley, Identifying states of a financial market. Sci. Rep. 2, 644 (2012)

    Article  Google Scholar 

  37. P. Ferreira, A. Dionisio, S.M.S. Movahed, Stock market comovements: nonlinear approach for 48 countries (2015), arXiv.org[q-fin], arXiv:1502.05603

  38. G. Raffaelli, M. Marsili, Dynamic instability in a phenomenological mode of correlated assets. J. Stat. Mech. 2006, 8001 (2006)

    Article  Google Scholar 

  39. D. Sornette, Why Stock Markets Crash: Critical Events in Complex Financial Systems (Princeton University Press, Princeton, 2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Borland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Borland, L. (2018). Financial Market Models. In: Müller, S., Plath, P., Radons, G., Fuchs, A. (eds) Complexity and Synergetics. Springer, Cham. https://doi.org/10.1007/978-3-319-64334-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64334-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64333-5

  • Online ISBN: 978-3-319-64334-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics