Skip to main content

Mapping Coastal Habitats in Wales

  • Chapter
  • First Online:
The Roles of Remote Sensing in Nature Conservation

Abstract

Many areas across Europe are mapped and monitored using a large range of different data types, sources and classification schemes leading to gaps in the knowledge required to fulfill the European Council’s Habitats Directive (1992). The Earth Observation Data for Habitat Monitoring (EODHaM) system, developed during the EU FP7 BioSOS project, introduces a systematic, hierarchical approach that is applicable to all sites and available as a standard, providing classifications of high value for conservation and biodiversity purposes (Lucas et al. Int J Appl Earth Observ Geoinf 37:17–28, 2015). The system is built on the Land Cover Classification System (LCCS) developed by the FAO for use in the field. The aim of this project is to generate accurate maps of the location, extent and condition of coastal Annex I habitats at Kenfig Burrows Special Area of Conservation (SAC), using VHR Worldview-2 data.

Indices, such as Normalized Difference Vegetation Index (NDVI) allow straightforward visual threshold determination in the rule base, classifying LCCS Level 3 with accuracies of 90% and above. Beyond Level 3, in situ data is key for training and validating EO data to determine if (a) lifeforms/habitats are separable with the available EO data, and (b) suitable thresholds can be determined for classification. Numerous indices can be calculated, and using the GPS point training data, a separability analysis based on Analysis of Variance (ANOVA) allows those with the highest separation scores to be chosen as layers for classification. By plotting the training data sets into boxplots, suitable thresholds are determined. The appropriateness of LCCS here varies with specific sites; for example, slack habitat in sand dune ecosystems can be accurately mapped from contextual information derived from slope (calculated using VHR LiDAR data) and can therefore be translated to habitat from LCCS Level 3. Classifications are therefore translated from land cover to habitat after LCCS Level 3 instead of following the hierarchy to Level 4 and beyond.

Once the broad habitat baseline is mapped, thresholds become restricting as they set clear straight lines in the feature space when classifying, therefore machine learning techniques such as random forest and/or support vector machines are more suitable for determining whether dominant species within broad habitat classes can be separated and classified accurately. By classifying dominant species, condition of habitats can be inferred. With accuracies of classifying some habitats higher than others when implementing EO data into a monitoring system, field surveying can never be ruled out to attain the knowledge required for the habitats directive. However, surveying can be applied specifically to those habitats that EO data cannot sufficiently classify.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandridis, T.K., Lazaridou, E., Tsirika, A., Zalidis, G.C.: Using earth observation to update a Natura 2000 habitat map for a wetland in Greece. J. Environ. Manag. 90(7), 2243–2251 (2009)

    Article  Google Scholar 

  • Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    Google Scholar 

  • Blaschke, T., Strobl, J., et al.: Whats wrong with pixels? Some recent developments interfacing remote sensing and gis. GeoBIT/GIS. 6(1), 12–17 (2001)

    Google Scholar 

  • Bock, M., Xofis, P., Mitchley, J., Rossner, G., Wissen, M.: Object-oriented methods for habitat mapping at multiple scales–case studies from northern Germany and Wye Downs, UK. J. Nat. Conserv. 13(2), 75–89 (2005)

    Article  Google Scholar 

  • Borre, J.V., Paelinckx, D., Mücher, C.A., Kooistra, L.: Integrating remote sensing in Natura 2000 habitat monitoring: prospects on the way forward. J. Nat. Conserv. 19(2), 116 (2011)

    Article  Google Scholar 

  • Box, G., Watson, G.S.: Robustness to non-normality of regression tests. Biometrika. 49, 93–106 (1961)

    Article  Google Scholar 

  • Brazier, P., Birch, K., Brunstrom, A., Bunker, A., Jones, M., Lough, N., Salmon, L., Wyn, G.: When the Tide Goes Out: the Biodiversity and Conservation of the Shores of Wales–Results from a 10 Year Intertidal Survey of Wales. Countryside Council for Wales, Bangor (2007)

    Google Scholar 

  • Breiman, L.: Classification and Regression Trees. Chapman & Hall/CRC, London (1984)

    Google Scholar 

  • Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1996)

    Google Scholar 

  • Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  • Cerna, L., Chytry, M.: Supervised classification of plant communities with artificial neural networks. J. Veg. Sci. 16(4), 407–414 (2005)

    Article  Google Scholar 

  • Chan, J.C., Paelinckx, D.: Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sens. Environ. 112, 2999–3011 (2008)

    Article  Google Scholar 

  • Chen, H., Ho, P.: Statistical pattern recognition in remote sensing. Pattern Recogn. 41(9), 2731–2741 (2008)

    Article  Google Scholar 

  • Chow, C.K.: An optimum character recognition system using decision functions. IEEE Trans. Electronic Comput. EC-6, 247–254 (1957)

    Google Scholar 

  • Corbane, C., Lang, S., Pipkins, K., Alleaume, S., Deshayes, M., Millan, V.E.G., Strasser, T., Borre, J.V., Toon, S., Michael, F.: Remote sensing for mapping natural habitats and their conservation status–new opportunities and challenges. Int. J. Appl. Earth Obs. Geoinf. 37, 7–16 (2015)

    Article  Google Scholar 

  • Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory. 13(1), 21–27 (1967)

    Article  Google Scholar 

  • Crippen, R.E.: Calculating the vegetation index faster. Remote Sens. Environ. 34(1), 71–73 (1990)

    Article  Google Scholar 

  • Data.gov.uk, 2016.: URL: https://www.environment.data.gov.uk/ds/survey/#/survey (2016)

  • Datt, B.: Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b and total carotenoid content in Eucalyptus leaves. Remote Sens. Environ. 66(2), 111–121 (1998)

    Article  Google Scholar 

  • Datt, B.: Remote sensing of water content in Eucalyptus leaves. Aust. J. Bot. 47(6), 909–923 (1999)

    Article  Google Scholar 

  • DeFries, R., Hansen, M., Townshend, J.: Global discrimination of land cover types from metrics derived from avhrr pathfinder data. Remote Sens. Environ. 54(3), 209–222 (1995)

    Article  Google Scholar 

  • Digital Globe: Digital Globe Website, URL: https://www.digitalglobe.com/about/our-constellation (2009)

  • Foody, G.M.: Status of land cover classification accuracy assessment. Remote Sens. Environ. 80(1), 185–201 (2002)

    Article  Google Scholar 

  • Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm, Machine Learning. Proceedings of the Thirteenth International Conference, pp. 148–156 (1996)

    Google Scholar 

  • Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., Huang, X.: MODIS collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114(1), 168–182 (2010)

    Article  Google Scholar 

  • Fu, K.S.: Application of pattern recognition to remote sensing. In: Fu, K.S. (ed.) Applications of Pattern Recognition. CRC Press, Boca Raton (1982)

    Google Scholar 

  • Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic, Orlando (1990)

    Google Scholar 

  • Fuller, R., Groom, G., Jones, A.: Land cover map of Great Britain. An automated classification of landsat thematic mapper data. Photogramm. Eng. Remote. Sens. 60(5), 553–562 (1994)

    Google Scholar 

  • Fuller, R.M., Smith, G.M., Sanderson, J.M., Hill, R.A., Thomson, A.G.: The UK land cover map 2000: construction of a parcel-based vector map from satellite images. Cartogr. J. 39(1), 15–25 (2002)

    Article  Google Scholar 

  • Gabroswki, S., Jozwik, A., Chen, C.H.: Nearest neighbor decision rule for pixel classification in remote sensing. In: Chen, C.H. (ed.) Frontiers of Remote Sensing Information Processing, pp. 315–327. World Scientific Publishing, Singapore (2003)

    Google Scholar 

  • Gad, S., Kusky, T.: Lithological mapping in the eastern desert of Egypt, the Barramiya area, using Landsat Thematic Mapper (TM). J. Afr. Earth Sci. 44(2), 196–202 (2006)

    Article  Google Scholar 

  • Geerken, R., Zaitchik, B., Evans, J.: Classifying rangeland vegetation type and coverage from NDVI time series using Fourier filtered cycle similarity. Int. J. Remote Sens. 26(24), 5535–5554 (2005)

    Article  Google Scholar 

  • Ghimire, P.O., Benediktsson, J.A., Sveinsson, J.R.: Contextual land-cover classification: incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic. Remote Sens. Lett. 1, 45–54 (2006)

    Article  Google Scholar 

  • Giri, C., Ochieng, E., Tieszen, L.L., Zhu, Z., Singh, A., Loveland, T., Masek, J., Duke, N.: Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 20(1), 154–159 (2011)

    Article  Google Scholar 

  • He, K.S., Rocchini, D., Neteler, M., Nagendra, H.: Benefits of hyperspectral remote sensing for tracking plant invasions. Divers. Distrib. 17(3), 381–392 (2011)

    Article  Google Scholar 

  • Hunt, E.R., Daughtry, C.S.T., Eitel, J.U.H., Long, D.S.: Remote sensing leaf chlorophyll content using a visible band index. Agron. J. 103(4), 1090–1099 (2011)

    Article  Google Scholar 

  • Index Database: Index Database Website, URL: http://www.indexdatabase.de/ (2016)

  • Laba, M., Downs, R., Smith, S., Welsh, S., Neider, C., White, S., Richmond, M., Philpot, W., Baveye, P.: Mapping invasive wetland plants in the Hudson river national estuarine research reserve using Quickbird satellite imagery. Remote Sens. Environ. 112(1), 286–300 (2008)

    Article  Google Scholar 

  • Landgrebe, D.A.: Signal Theory Methods in Multispectral Remote Sensing. Wiley, New York (2003)

    Book  Google Scholar 

  • Langley, S.K., Cheshire, H.M., Humes, K.S.: A comparison of single date and multi-temporal satellite image classifications in a semi-arid grassland. J. Arid Environ. 49(2), 401–411 (2001)

    Article  Google Scholar 

  • Lieth, H. The phenological viewpoint in productivity studies. In: Productivity of Forest Ecosystems. Proceedings of the Brussels Symposium by UNESCO, pp. 71–83 (1971)

    Google Scholar 

  • Liu, S., Liu, R., Liu, Y.: Spatial and temporal variation of global lai during 1981–2006. J. Geogr. Sci. 20(3), 323–332 (2010)

    Article  Google Scholar 

  • Lucas, R., Rowlands, A., Brown, A., Keyworth, S., Bunting, P.: Rule-based classification of multi-temporal satellite imagery for habitat and agricultural land cover mapping. ISPRS J. Photogramm. Remote Sens. 62(3), 165–185 (2007)

    Article  Google Scholar 

  • Lucas, R., Medcalf, K., Brown, A., Bunting, P., Breyer, J., Clewley, D., Keyworth, S., Blackmore, P.: Updating the Phase 1 habitat map of Wales, UK, using satellite sensor data. ISPRS J. Photogramm. Remote Sens. 66(1), 81–102 (2011)

    Article  Google Scholar 

  • Lucas, R., Blonda, P., Bunting, P., Jones, G., Inglada, J., Arias, M., Kosmidou, V., Petrou, Z.I., Manakos, I., Adamo, M., Charnock, R., Tarantino, C., Mücher, C.A., Jongman, R.H.G., Kramer, H., Arvor, D., Honrado, J.P., Mairota, P.: The Earth Observation Data for Habitat Monitoring (EODHaM) system. Int. J. Appl. Earth Obs. Geoinf. 37, 17–28 (2015)

    Article  Google Scholar 

  • MacAlister, C., Mahaxay, M.: Mapping wetlands in the lower Mekong Basin for wetland resource and conservation management using Landsat ETM+ images and field survey data. J. Environ. Manag. 90(7), 2130–2137 (2009)

    Article  Google Scholar 

  • Marceau, D.J., Howarth, P.J., Gratton, D.J.: Remote sensing and the measurement of geographical entities in a forested environment. 1. The scale and spatial aggregation problem. Remote Sens. Environ. 49(2), 93–104 (1994)

    Article  Google Scholar 

  • McDermid, G.J., Franklin, S.E., LeDrew, E.F.: Remote sensing for large-area habitat mapping. Prog. Phys. Geogr. 29(4), 449–474 (2005)

    Article  Google Scholar 

  • Medcalf, K.A., Parker, J.A., Turton, N., Bell, G.: Making Earth Observation Work for UK Biodiversity Conservation Phase 1, JNCC Report, 495. Joint Nature Conservation Committee, Peterborough (2014)

    Google Scholar 

  • Menzel, A.: Phenology: its importance to the global change community. Clim. Chang. 54(4), 379–385 (2002)

    Article  Google Scholar 

  • Mountrakis, G., Im, J., Ogole, C.: Support vector machines in remote sensing: a review. ISPRS J. Photogramm. Remote Sens. 66, 247–259 (2011)

    Article  Google Scholar 

  • Nagendra, H.: Using remote sensing to assess biodiversity. Int. J. Remote Sens. 22(12), 2377–2400 (2001)

    Article  Google Scholar 

  • Nagendra, H., Lucas, R., Honrado, J.P., Jongman, R.H., Tarantino, C., Adamo, M., Mairota, P.: Remote sensing for conservation monitoring: assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecol. Indic. 33, 45–59 (2013)

    Article  Google Scholar 

  • Pal, M., Mather, P.M.: Support vector machines for classification in remote sensing. Int. J. Remote Sens. 26(5), 1007–1011 (2005)

    Article  Google Scholar 

  • Peddle, D.R.: Knowledge formulation for supervised evidential classification. Photogramm. Eng. Remote. Sens. 61(4), 409–417 (1995)

    Google Scholar 

  • Pye, K., Blott, S.J.: Kenfig Sand Dunes – Potential for Dune Reactivation (2011).

    Google Scholar 

  • Roudriguez-Galiano, V.F., Ghimire, B., Rogan, J., Chica-Olmo, M., Rigol-Sanchez, J.P.: An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 67, 93–104 (2012)

    Article  Google Scholar 

  • Sarmiento, G., Monasterio, M.: Life forms and phenology. Ecosyst. World. 13, 79–108 (1983)

    Google Scholar 

  • Scheffe, H.: The Analysis of Variance (1959)

    Google Scholar 

  • Scikit-learn website.: URL: http://www.scikit-learn.org/stable/ (2016)

  • Shrestha, D.P., Zinck, J.A.: Land use classification in mountainous areas: integration of image processing, digital elevation data and field knowledge (application to Nepal). Int. J. Appl. Earth Obs. Geoinf. 3(1), 78–85 (2001)

    Article  Google Scholar 

  • Taylor Jr., F.G.: Phenodynamics of production in a mesic deciduous forest. In: Phenology and Seasonality Modeling, pp. 237–254. Springer, Berlin (1974)

    Chapter  Google Scholar 

  • Tiku, M.L.: Power function of the F-test under non-nominal situations. J. Am. Stat. Assoc. 66, 913–916 (1971)

    Google Scholar 

  • Tso, B., Olsen, R.C.: Combining spectral and spatial information into hidden markov models for unsupervised image classification. Int. J. Remote Sens. 26(10), 2113–2133 (2005)

    Article  Google Scholar 

  • Wang, Q., Tenhunen, J.D.: Vegetation mapping with multitemporal NDVI in north eastern China transect (NECT). Int. J. Appl. Earth Obs. Geoinf. 6(1), 17–31 (2004)

    Article  Google Scholar 

  • Webb, H., Pye, K., Huckle, J., Blott, S.: Beach Topographic Variability in Relation to Significant Biological. Countryside Council for Wales, Bangor (2010)

    Google Scholar 

  • Williams, A., Davies, P.: Coastal dunes of wales; vulnerability and protection. J. Coast. Conserv. 7(2), 145–154 (2001)

    Article  Google Scholar 

  • Wulder, M.A., Hall, R.J., Coops, N.C., Franklin, S.E.: High spatial resolution remotely sensed data for ecosystem characterization. Bioscience. 54(6), 511–521 (2004)

    Article  Google Scholar 

  • Xie, Y., Sha, Z., Yu, M.: Remote sensing imagery in vegetation mapping: a review. J. Plant Ecol. 1(1), 9–23 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwawr Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jones, G., Bunting, P., Hurford, C. (2017). Mapping Coastal Habitats in Wales. In: Díaz-Delgado, R., Lucas, R., Hurford, C. (eds) The Roles of Remote Sensing in Nature Conservation. Springer, Cham. https://doi.org/10.1007/978-3-319-64332-8_6

Download citation

Publish with us

Policies and ethics