Skip to main content

Significance of Interaction Parameter Levels in Interaction Quality Modelling for Human-Human Conversation

  • Conference paper
  • First Online:
Text, Speech, and Dialogue (TSD 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10415))

Included in the following conference series:

  • 1499 Accesses

Abstract

The Interaction Quality (IQ) metric, which originally was designed for spoken dialogue systems (SDSs) to assess human-computer spoken interaction (HCSI) and then adapted to human-human conversation (HHC), is based on features from three interaction parameter levels: an exchange, a window, and a dialogue level. To determine the significance of the window and dialogue interaction parameter levels, as well as their combination, computations, based on different data sets, have been performed using several classification algorithms. The obtained results may be used for further improvement of the IQ model for HHC in terms of the computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://rapidminer.com/.

  2. 2.

    http://r-project.org/.

References

  1. Abdi, H., Williams, L.: Principal component analysis. WIREs Comput. Stat. 2, 433–459 (2010)

    Article  Google Scholar 

  2. Bailey, R.A.: Design of Comparative Experiments. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  3. le Cessie, S., Houwelingen, J.C.: Ridge estimators in logistic regression. Appl. Stat. 41(1), 191–201 (1992)

    Article  MATH  Google Scholar 

  4. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Measur. 20, 37–46 (1960)

    Article  Google Scholar 

  5. Cohen, J.: Weighted kappa: nominal scale agreement provision for scaled disagreement or partial credit. Psychol. Bull. 70(4), 213–220 (1968)

    Article  Google Scholar 

  6. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  7. Eyben, F., Weninger, F., Gross, F., Schuller, B.: Recent developments in opensmile, the Munich open-source multimedia feature extractor. In: Proceedings of ACM Multimedia (MM), pp. 835–838 (2013)

    Google Scholar 

  8. Fay, M.P., Proschan, M.A.: Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Stat. Surv. 4, 1–39 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goutte, C., Gaussier, E.: A probabilistic interpretation of precision, recall and F-Score, with implication for evaluation. In: Losada, D.E., Fernández-Luna, J.M. (eds.) ECIR 2005. LNCS, vol. 3408, pp. 345–359. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31865-1_25

    Chapter  Google Scholar 

  10. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutmann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)

    Article  Google Scholar 

  11. John, G.H., Langley, P.: Estimating continuous distribution in Bayesian classifiers. In: Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338–345 (1995)

    Google Scholar 

  12. Kennedy, J.J., Bush, A.J.: An Introduction to the Design and Analysis of Experiments in Behavioural Research. University Press of America, Lanham (1985)

    Google Scholar 

  13. Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Schoelkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge (1999)

    Google Scholar 

  14. Rosenberg, A.: Classifying skewed data: importance to optimize average recall. In: Proceedings of INTERSPEECH 2012, pp. 2242–2245 (2012)

    Google Scholar 

  15. Schmitt, A., Schatz, B., Minker, W.: Modeling and predicting quality in spoken human-computer interaction. In: Proceedings of the SIGDIAL 2011 Conference, pp. 173–184. Association for Computational Linguistics (2011)

    Google Scholar 

  16. Schmitt, A., Ultes, S.: Interaction quality: assessing the quality of ongoing spoken dialog interaction by experts and how it relates to user satisfaction. Speech Commun. 74, 12–36 (2015)

    Article  Google Scholar 

  17. Schmitt, A., Ultes, S., Minker, W.: A parameterized and annotated corpus of the CMU lets go bus information system. In: International Conference on Language Resources and Evaluation (LREC), pp. 3369–3373 (2012)

    Google Scholar 

  18. Schuller, B., Steidl, S., Batliner, A.: The interspeech 2009 emotion challenge. In: Proceedings of INTERSPEECH 2009, pp. 312–315 (2009)

    Google Scholar 

  19. Sidorov, M., Brester, C., Schmitt, A.: Contemporary stochastic feature selection algorithms for speech-based emotion recognition. In: Proceedings of INTERSPEECH 2015, pp. 2699–2703 (2015)

    Google Scholar 

  20. Spearman, C.: The proof and measurement of association between two things. Am. J. Psychol. 15(1), 72–101 (1904)

    Article  Google Scholar 

  21. Spirina, A., Sidorov, M., Sergienko, R., Schmitt, A.: First experiments on interaction quality modelling for human-human conversation. In: Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics (ICINCO), vol. 2, pp. 374–380 (2016)

    Google Scholar 

  22. Spirina, A.V., Sidorov, M.Y., Sergienko, R.B., Semenkin, E.S., Minker, W.: Human-human task-oriented conversations corpus for interaction quality modelling. Vestnik SibSAU 17(1), 84–90 (2016)

    Google Scholar 

  23. Ultes, S., Schmitt, A., Minker, W.: Analysis of temporal features for interaction quality estimation. In: Proceedings of the 7th International Workshop on Spoken Dialogue Systems (IWSDS) (2016)

    Google Scholar 

  24. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  25. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San Francisco (2011)

    Google Scholar 

Download references

Acknowledgments

The work presented in this paper was partially supported by the DAAD (German Academic Exchange Service), the Ministry of Education and Science of Russian Federation within project 28.697.2016/2.2, and the Transregional Collaborative Research Centre SFB/TRR 62 “Companion-Technology for Cognitive Technical Systems” which is funded by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasiia Spirina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Spirina, A., Skorokhod, A., Karaseva, T., Polonskaia, I., Sidorov, M. (2017). Significance of Interaction Parameter Levels in Interaction Quality Modelling for Human-Human Conversation. In: Ekštein, K., Matoušek, V. (eds) Text, Speech, and Dialogue. TSD 2017. Lecture Notes in Computer Science(), vol 10415. Springer, Cham. https://doi.org/10.1007/978-3-319-64206-2_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64206-2_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64205-5

  • Online ISBN: 978-3-319-64206-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics